
Java Generics
Frequently Asked Questions

written and maintained by
Angelika Langer

January 2015

This is a snapshot of the online Java Generics FAQ in printable form. The most up-to-date
version of the original document can be found at

www.AngelikaLanger.com/GenericsFAQ/JavaGenericsFAQ.html.

All text and content found in this document and online at URLs starting with
http://www.AngelikaLanger.com/GenericsFAQ/ (collectively, "the Java Generics FAQ") are
the sole property of Angelika Langer. Copyright @ 2004-2022 by Angelika Langer.
All rights reserved.

About This FAQ
© Copyright 2004-2022. by Angelika Langer. All Rights Reserved.

How is this FAQ organized at large?
How are the individual answered questions organized?
Whom is the FAQ for?
How do I best read the FAQ - top-to-bottom or zig-zag?
Whom do I contact when I have questions, comments or suggestions related to this FAQ?

Table Of Contents
Acknowledgements
Change Log
Copyright Notice

How is this FAQ organized at large?

The FAQ has 4 major sections:

Fundamentals of Java Generics
Language Features of Java Generics
Practicalities - Programming With Java Generics
Technicalities - Under the Hood of the Compiler

"Fundamentals of Java Generics" explains the very basics of Java generics, what generics are and what their
purpose and benefit is.

"Language Features of Java Generics" is a huge section that explains all language features of Java Generics:

Generic Types
Generic Methods
Type Parameters
Type Arguments

This section can be seen as the theoretical foundation and lays the ground for understanding more practical and
more advanced issues.

"Practicalities - Programming With Java Generics" aims to address issues that arise when you use Java Generics
in practice. It discusses topics such as "How do I design a generics API?" , "Should my class be generic or
not?", "What happens when I mix generic and non-generic Java?", "Why is class Class generic and what is
this good for?". The focus is on programming techniques on the one hand and pitfalls and surprises on the
other hand. It is likely that this section will grow over time as programming idioms and techniques using Java
Generics will be discovered.

"Technicalities - Under the Hood of the Compiler" addresses more advanced and more esoteric aspects of Java
Generics, which will become the more interesting the more you learn about Java Generics. Some of these
topics are typically of little interest when you begin using generics. For instance, the section explains what the
notorious "unchecked" warnings are, what translation by type erasure is, what wildcard capture and type
inference are, what the type system looks like now that it includes generic types, and how overload resolution
works in presence of generic methods.

In addition to these four main sections the FAQ has a Table Of Contents, a reference to More Information on
Java Generics such as tutorials, books, articles, and websites, a Glossary, and an alphabetic Index.

LINK TO THIS Preface.FAQ001

REFERENCES

How are the individual answered questions organized?

There is a question, a short answer and a sometimes fairly long answer, plus a cross reference section.

I've found that many readers underestimate the reference section - to their own detriment. The cross references
refer to related items and point in particular to entries that explain terms or facts mentioned in the text, but not
explained there. In other words, if there is something in the explanation that has not been explained yet, go to
the reference section and see whether you can find a reference to a corresponding entry that explains it. If not,
let me know.

LINK TO THIS Preface.FAQ002

REFERENCES

Whom is the FAQ for?

For practicing Java programmers who have to do with Java Generics.

First a disclaimer: the FAQ does not aim to be mainly a tutorial. Tutorials can be found elsewhere. It has
tutorial style answers, but it goes beyond what a casual or first-time generics user might want to know about
Java Generics. On the other hand, it is still written for humans, as opposed to compiler builders or computer
science theorists whose pet issue is type theory. While type theory is an interesting topic, the main target
audience is programmers who use or want to use generics in practice.

The FAQ is supposed to grow and mature over time. In particular the section on programming techniques
using generics will hopefully gain weight as the body of experience with Java generics grows. If you have a
technique or observation made in practice that you want to share with other programmers, feel free to send
email and suggest it for inclusion in the FAQ.

LINK TO THIS Preface.FAQ003

REFERENCES Where can I find a generics tutorial?
Whom do I contact when I have questions, comments or suggestions related to this FAQ?

How do I best read the FAQ - top-to-bottom or zig-zag?

Both should be possible.

The FAQ is kind of organized in a way that you can read it sequentially, starting with the first question until the
bitter end. However, you will find that occasional jumps back and forth will be inevitable.

For instance, when the language features are explained the term type erasure will be mentioned. Type erasure
is part of what the compiler does during compilation and it is discussed in detail in the Technicalities section.
So you will probably jump forward to the explanation of type erasure to see what it is in principle, spare
yourself the details, and return to the language feature from which you started your excursion to the
Technicalities section.

Beyond that, the FAQ is mainly intended as a reference and can be consulted any order you feel like. Related
topics are grouped together so that it might be convenient to read certain sections that are of immediate interest
and ignore the rest for the time being.

You might find that the same fact is explained repeatedly in different entries. This is intended. A certain
amount of redundency is inevitable in order to make it possible to use the FAQ as a reference. If you feel you
already know this, skip it and move on.

Also, if you use the FAQ as a reference, the table of contents and the index should help finding what you are
looking for. If not, let me know.

LINK TO THIS Preface.FAQ004

REFERENCES Table Of Contents
Index
Whom do I contact when I have questions, comments or suggestions related to this FAQ?

Whom do I contact when I have questions, comments or suggestions related to this FAQ?

If you want to provide feedback or have questions regarding Java generics, to which you cannot find an answer
in this document, feel free to send me EMAIL or use the GENERICS FAQ form. I might not be capable of answering
in a timely manner or perhaps not at all, but I will try.

LINK TO THIS Preface.FAQ005

REFERENCES

Table Of Contents

About This FAQ

Fundamentals of Java Generics

Language Features of Java Generics

Generic Types

Fundamentals
Concrete Instantiations
Raw Types
Wildcard Instantiations

Generic Methods

Fundamentals

Type Parameters

Fundamentals
Type Parameter Bounds
Usage
Scope
Static Context

Type Arguments

http://www.angelikalanger.com/Forms/FAQ.html

Fundamentals
Wildcards
Wildcard Bounds

Practicalities - Programming With Java Generics

Using Generic Types
Using Generic Methods
Coping With Legacy
Defining Generic Types and Methods
Designing Generic Methods
Working With Generic Interfaces
Implementing Infrastructure Methods
Using Runtime Type Information
Reflection

Technicalities - Under the Hood of the Compiler

Compiler Messages
Heap Pollution
Type Erasure
Type System
Exception Handling
Static Context
Type Argument Inference
Wilcard Capture
Wildcard Instantiations
Cast and instanceof

More Information on Java Generics

Glossary

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

About This FAQ

How is this FAQ organized at large?
How are the individual answered questions organized?
Whom is the FAQ for?
How do I best read the FAQ - top-to-bottom or zig-zag?
Whom do I contact when I have questions, comments or suggestions related to this FAQ?

Fundamentals of Java Generics

What are Java generics?
What is the primary purpose of Java generics?
What is the benefit of using Java generics?

What does type-safety mean?

Language Features of Java Generics

Which language features are related to Java generics?

Generic Types

Fundamentals
What is a generic or parameterized type?
How do I define a generic type?
Are there any types that cannot have type parameters?
How is a generic type instantiated (to form a parameterized type)?
Why do instantiations of a generic type share the same runtime type?
Can I cast to a parameterized type?
Can I use parameterized types in exception handling?
Can generic types have static members?

Concrete Instantiations
What is a concrete instantiation of a generic type?
Are different concrete instantiations of the same generic type compatible?
Can I use a concrete parmeterized type like any other type?
Can I create an array whose component type is a concrete parameterized type?
Can I declare a reference variable of an array type whose component type is a concrete
parameterized type?
How can I work around the restriction that there are no arrays whose component type
is a concrete parameterized type?
Why is there no class literal for the concrete parameterized type?

Raw Types
What is the raw type?
Can I use a raw type like any other type?

Wildcard Instantiations
What is a wildcard instantiation of a generic type?
What is an unbounded wildcard instantiation of a generic type?
Which methods and fields are accessible/inaccessible through a reference variable of a
wildcard parameterized type?
What is the difference between the unbounded wildcard parameterized type and the
raw type?
Can I use a wildcard parameterized type like any other type?
Can I create an object whose type is a wildcard parameterized type?
Can I create an array whose component type is a wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is a bounded
wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard
parameterized type?
Can I declare a reference variable of an array type whose component type is an
unbounded wildcard parameterized type?
Can I derive from a wildcard instantiation of a parameterized type?
Why is there no class literal for wildcard parameterized types?

Generic Methods

Fundamentals
What is a generic method?
How do I invoke a generic method?

Type Parameters

Fundamentals
What is a type parameter?
Where is a type parameter visible (or invisible)?

Type Parameter Bounds
What is a bounded type parameter?
Which types are permitted as type parameter bounds?
Can I use a type parameter as a type parameter bound?
Can I use different instantiations of a same generic type as bounds of a type parameter?
How can I work around the restriction that a type parameter cannot have different
instantiations of a same generic type as its bounds?
Does a bound that is a class type give access to all its public members?
How do I decrypt "Enum<E extends Enum<E>>"?

Usage
Can I use a type parameter like a type?
Can I create an object whose type is a type parameter?
Can I create an array whose component type is a type parameter?
Can I cast to the type that the type parameter stands for?
Can I use a type parameter in exception handling?
Can I derive from a type parameter?
Why is there no class literal for a type parameter?

Scope
Where is a type parameter visible (or invisible)?
Can I use a type parameter as part of its own bounds or in the declaration of other type
parameters?

Static Context
Is there one instances of a static field per instantiation of a generic type?
Why can't I use a type parameter in any static context of the generic class?

Type Arguments

Fundamentals
What is a type argument?
Which types are permitted as type arguments?
Are primitive types permitted as type arguments?
Are wildcards permitted as type arguments?
Are type parameters permitted as type arguments?
Do I have to specify a type argument when I want to use a generic type?
Do I have to specify a type argument when I want to invoke a generic method?

Wildcards
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?
What do multi-level wildcards mean?
If a wildcard appears repeatedly in a type argument section, does it stand for the same type?

Wildcard Bounds
What is a wildcard bound?
Which types are permitted as wildcard bounds?
What is the difference between a wildcard bound and a type parameter bound?

Practicalities - Programming With Java Generics

Using Generic Types
Should I prefer parameterized types over raw types?
Why shouldn't I mix parameterized and raw types, if I feel like it?
Should I use the generic collections or better stick to the old non-generic collections?
What is a checked collection?
What is the difference between a Collection<?> and a Collection<Object>?
How do I express that a collection is a mix of objects of different types?
What is the difference between a Collection<Pair<String,Object>>, a Collection<Pair<String,?>>
and a Collection<? extends Pair<String,?>>?
How can I make sure that the same wildcard stand for the same type?

Using Generic Methods
Why doesn't method overloading work as I expect it?
Why doesn't method overriding work as I expect it?

Coping With Legacy
What happens when I mix generic and non-generic code?
Should I re-engineer all my existing classes and generify them?
How do I generify an existing non-generic type or method?
Can I safely generify a supertype, or does it affect all subtypes?
How do I avoid breaking binary compatibility when I generify an existing type or method?

Defining Generic Types and Methods
Which types should I design as generic types instead of defining them as regular non-generic
types?
Do generics help designing parallel class hierarchies?
When would I use an unbounded wildcard instantiation instead of a bounded or concrete
instantiation?
When would I use a wildcard instantiation instead of a concrete instantiation?
When would I use a wildcard instantiation with an lower bound?
How do I recover the actual type of the this object in a class hierarchy?
What is the "getThis" trick?
How do I recover the element type of a container?
What is the "getTypeArgument" trick?

Designing Generic Methods
Why does the compiler sometimes issue an unchecked warning when I invoke a "varargs" method?
What is a "varargs" warning?
How can I suppress a "varargs" warning?
When should I refrain from suppressing a "varargs" warning?
Which role do wildcards play in method signatures?
Which one is better: a generic method with type parameters or a non-generic method with
wildcards?
Under which circumstances are the generic version and the wildcard version of a method
equivalent?
Under which circumstances do the generic version and the wildcard version of a method mean
different things?
Under which circumstances is there no transformation to the wildcard version of a method
possible?
Should I use wildcards in the return type of a method?
How do I implement a method that takes a wildcard argument?
How do I implement a method that takes a multi-level wildcard argument?
I want to pass a U and a X<U> to a method. How do I correctly declare that method?

Working With Generic Interfaces
Can a class implement different instantiations of the same generic interface?

Can a subclass implement another parameterized interface than any of its superclasses does?
What happens if a class implements two generic interfaces that define the same method?
Can an interface type nested into a generic type use the enclosing type's type parameters?

Implementing Infrastructure Methods
How do I best implement the equals method of a generic type?
How do I best implement the clone method of a generic type?

Using Runtime Type Information
What does the type parameter of class java.lang.Class mean?
How do I pass type information to a method so that it can be used at runtime?
How do I generically create objects and arrays?
How do I perform a runtime type check whose target type is a type parameter?

Reflection
Which information related to generics can I access reflectively?
How do I retrieve an object's actual (dynamic) type?
How do I retrieve an object's declared (static) type?
What is the difference between a generic type and a parameterized type in reflection?
How do I figure out whether a type is a generic type?
Which information is available about a generic type?
How do I figure out whether a type is a parameterized type?
Which information is available about a parameterized type?
How do I retrieve the representation of a generic method?
How do I figure out whether a method is a generic method?
Which information is available about a generic method?
Which information is available about a type parameter?
What is a generic declaration?
What is a wildcard type?
Which information is available about a wildcard?

Technicalities - Under the Hood of the Compiler

Compiler Messages
What is an "unchecked" warning?
How can I disable or enable unchecked warnings?
What is the -Xlint:unchecked compiler option?
What is the SuppressWarnings annotation?
How can I avoid "unchecked cast" warnings?
Is it possible to eliminate all "unchecked" warnings?
Why do I get an "unchecked" warning although there is no type information missing?

Heap Pollution
What is heap pollution?
When does heap pollution occur?

Type Erasure
How does the compiler translate Java generics?
What is type erasure?
What is reification?
What is a bridge method?
Under which circumstances is a bridge method generated?
Why does the compiler add casts when it translates generics?
How does type erasure work when a type parameter has several bounds?
What is a reifiable type?
What is the type erasure of a parameterized type?
What is the type erasure of a type parameter?
What is the type erasure of a generic method?

Is generic code faster or slower than non-generic code?
How do I compile generics for use with JDK <= 1.4?

Type System
How do parameterized types fit into the Java type system?
How does the raw type relate to instantiations of the corresponding generic type?
How do instantiations of a generic type relate to instantiations of other generic types that have the
same type argument?
How do unbounded wildcard instantiations of a generic type relate to other instantiations of the
same type?
How do wildcard instantiations with an upper bound relate to other instantiations of the same type?
How do wildcard instantiations with a lower bound relate to other instantiations of the same type?
Which super-subtype relationships exist among instantiations of generic types?
Which super-subset relationships exist among wildcards?
Does "extends" always mean "inheritance"?

Exception Handling
Can I use parameterized types in exception handling?
Why are generic exception and error types illegal?
Can I use a type parameter in exception handling?
Can I use a type parameter in a catch clause?
Can I use a type parameter in in a throws clause?
Can I throw an object whose type is a type parameter?

Static Context
How do I refer to static members of a parameterized type?
How do I refer to a (non-static) inner class of a parameterized type?
How do I refer to an interface type nested into a parameterized type?
How do I refer to an enum type nested into a parameterized type?
Can I import a particular instantiation of generic type?
Why are generic enum types illegal?

Type Argument Inference
What is type argument inference?
Is there a correspondence between type inference for method invocation and type inference for
instance creation?
What is the "diamond" operator?
What is type argument inference for instance creation expressions?
Why does the type inference for an instance creation expression fail?
What is type argument inference for generic methods?
What explicit type argument specification?
Can I use a wildcard as the explicit type argument of a generic method?
What happens if a type parameter does not appear in the method parameter list?
Why doesn't type argument inference fail when I provide inconsistent method arguments?
Why do temporary variables matter in case of invocation of generic methods?

Wilcard Capture
What is the capture of a wildcard?
What is the capture of an unbounded wildcard compatible to?
Is the capture of a bounded wildcard compatible to the bound?

Wildcard Instantiations
Which methods and fields are accessible/inaccessible through a reference variable of a wildcard
type?
Which methods that use the type parameter in the argument or return type are accessible in an
unbounded wildcard instantiation?
Which methods that use the type parameter in the argument or return type are accessible in an
upper bound wildcard instantiation?
Which methods that use the type parameter in the argument or return type are accessible in a lower
bound wildcard instantiation?
Which methods that use the type parameter as type argument of a parameterized argument or return
type are accessible in a wildcard instantiation?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument

or return type are accessible in a wildcard instantiation?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument
or return type are accessible in a wildcard instantiation?
In a wildcard instantiation, can I read and write fields whose type is the type parameter?
Is it really impossible to create an object whose type is a wildcard parameterized type?

Cast and instanceof
Which types can or must not appear as target type in an instanceof expression?

Overloading and Overriding
What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is a subsignature?
What are override-equivalent signatures?
When does a method override its supertype's method?
What are covariant-return types?
What are substitutable return types?
Can a method of a non-generic subtype override a method of a generic supertype?
Can a method of a generic subtype override a method of a generic supertype?
Can a generic method override a generic one?
Can a non-generic method override a generic one?
Can a generic method override a non-generic one?
What is overload resolution?

More Information on Java Generics

Where can I find a generics tutorial?
Where can I find a specification of the Java generics language features?
Which books cover Java generics?
What webpages are devoted to Java generics?

Glossary

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Acknowledgements

The FAQ is written and maintained by Angelika Langer.

Klaus Kreft, Bruce Eckel and Cay Horstmann reviewed this FAQ and provided invaluable feedback.

A number of individuals at (or formerly at) Sun Microsystems (now Oracle) patiently answered countless
questions I posed regarding Java generics. My thanks to Gilad Bracha, Neal Gafter, and Peter von der Ahé.

Suggestions and corrections, that inspired changes in this FAQ, have been provided by the following people (in
alphabetic order): Eric Armstrong, Richard Grin, Markus Keller, Richard Kennard, Sascha Kratky, Keith Lea,
Mike Lehmann, Maurice Naftalin, Joe Soroka, Frank Tip, Phil Wadler.

file:///D|/HomePage/HomepageGenerator/sources/HomePage/AboutMe.html

Change Log

Below is a list of minor and major modifications of the FAQ.

October 2004 First release.

January 2005 Terminology change.

A reader pointed out that the draft of JLS 3 uses terms different from what I use in this
FAQ document. This is because I started writing the FAQ before even a draft of JLS 3
was available. There still is no final specification of the language features of Java
Generics. Nonetheless I decided to reduce the mismatch somewhat by changing some of
the terms used throughout this document.

The most significant deviation from the JLS 3 terminology is the use of the term
"parameterized type". The JLS uses the term "parameterized type" to refer to types with a
type argument list, such as List<String> or List<?>. I used the term "parameterized
type" to distinguish between types with type parameters, such as List, which is a type that
declares a type parameter E that stands for the type of the elements in the list, and plain old
types without type parameters, such as String, Date, Point, etc. Hence I made the
following change:

formerly used in this FAQ => now used in this FAQ (and in JLS 3)
parameterized type/method => generic type/method
instantiation of a parameterized type => parameterized type

There remains an issue regarding use of the term "instantiation". The term "instantiation"
is used in the JLS in conjunction with object creation: a type is instantiated to form an
instance of the type, that is, an object of that type. I reuse the term "instantiation" to refer
to the "creation" of a parameterized type from a generic type, that is, for the manifestation
of a generic type such as List with its formal type parameter E as a parameterized type
with an actual type argument as in List<String> or List<?>. This can be regarded as
misleading, because nothing is created, not even a new type, different from what happens
in C++ for instance when a template is instantiated. Yet I could not think of a more
precise or adequate term that would denote the fact that formal type parameters are
replaced by actual type arguments in a generic type or method. In other words, I
"instantiate" generic types to form parameterized types, and I talk of "instantiations" of a
generic type, which are the parameterized type, as opposed to "instances" of a type, which
would be objects, like in the JLS.

May 2005 Updated the reference section; since April 19, 2005 the Java Language Specification, 3rd
edition is available on the web at: http://java.sun.com/docs/books/jls/

August 2005 Corrected a couple of bugs. Affected are TypeArguments.FAQ103, TypeArguments.FAQ104,
TechnicalDetails.FAQ501, TechnicalDetails.FAQ502, ProgrammingIdioms.FAQ201, ProgrammingIdioms.FAQ303.
Added some new items: ProgrammingIdioms.FAQ006A, ProgrammingIdioms.FAQ050,ProgrammingIdioms.FAQ302A

thru ProgrammingIdioms.FAQ302C, TechnicalDetails.FAQ050, TechnicalDetails.FAQ051.

Added a glossary in order to get the terminology straight. I noticed that documents
originating from Sun Microsystems, such as the language specification (JLS 3) and the
tutorial, use slightly different terms than you will find in books and articles from other
sources. The glossary aims to list commonly used terms related to Java Generics and to
explain what they denote and which ones are synonyms. The controversial terms are

http://java.sun.com/docs/books/jls/jls-proposed-changes.html
http://java.sun.com/docs/books/jls/
http://java.sun.com/docs/books/jls/
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

invocation/instantiation of generic/parameterized types/methods. The JLS talks of an
invocation of a generic type or method, where most other authors talk of an instantiation
of a generic type or method. Some authors equate generic type and parameterized type,
while the JLS equates invocation and parameterized type.

October 2005 Added some stuff on overloading and overriding in the context of Java generics. The new
items are: ProgrammingIdioms.FAQ051 and TechnicalDetails.FAQ801 thru TechnicalDetails.FAQ830.
Further additions: ProgrammingIdioms.FAQ103A, ProgrammingIdioms.FAQ201A, ProgrammingIdioms.FAQ300,
TechnicalDetails.FAQ007, TechnicalDetails.FAQ402A, TechnicalDetails.FAQ609.

December 2005 Added new item: TypeParameters.FAQ107.
Made available a PDF version of this FAQ document.

May 2006 Added new item: ProgrammingIdioms.FAQ205.

November 2006 Added an additional example to item ProgrammingIdioms.FAQ300. My thanks to Peter von der
Ahé and Bob Lee for supplying the example.

December 2006 Added whole new section on Java Generics and Reflection: ProgrammingIdioms.Reflection.
Corrected a mistake in entry TechnicalDetails.FAQ821. My thanks to Jingyi Wang for spotting the
mistake.

May 2007 Corrected some typos. My thanks to Oleksii Shurubura and Zhang Xu for spotting the
bugs.
Added new item describing the "getThis" trick: ProgrammingIdioms.FAQ206.

October 2007 Corrected some typos. My thanks to Steven Adams and Seb Rose for spotting the bugs.

February 2008 Corrected some typos. My thanks to Liu Yuqing for spotting the bugs.
German speaking readers might be interested in a series of articles that I made available at
EffectiveJava.The articles are drafts of contributions to our "Effective Java" column published
in a German print magazine in 2007.

March 2008 Corrected some typos. My thanks to Marcel Rüedi for spotting the bugs.

April 2008
Replaced an incorrect example in TypeParameters.FAQ402 by a more useful one and corrected a
bug in TypeParameters.FAQ105. My thanks to Jürgen Jäschke and Martin Goerg for spotting the
bugs.

July 2008 Corrected some typos. My thanks to Rob Ross for spotting the bugs.
Added some links and bookmarks to the PDF version of this FAQ document for better
navigation. It is not perfect, but I hope it helps.

August 2008 Added a link and an additional example to Practicalities.FAQ603. My thanks to Dan Frankowski
for suggesting the addition.
Rewrote Technicalities.FAQ402A because the compilers nowadays apply smarter type inference
strategies than they did when the entry was written; as a result some of the source code
examples were no longer meaningful. My thanks to Steven Busack for bringing the
changes to my attention.
Added two new entries Practicalities.FAQ207 and Practicalities.FAQ208 that describe a programming
technique that Jesse Glick brought to my attention. Kudos to Jesse.

October 2008 Corrected some typos. My thanks to Gary Gregory for spotting the bugs.

August 2009 Corrected some typos. My thanks to Ganesh Hegde and Barry Soroka for spotting the
bugs.

June 2010 Corrected bugs in Technicalities.FAQ103 and Technicalities.FAQ608. My thanks to Clive Scott for
spotting the bugs.

August 2010 Made an update to acknowledge additions and corrections intended for release with Java
7. Specifically, I added a couple of entries regarding the problem with varargs and
generics, an explanation of the new varargs warning, and whether or not one can safely
suppress the varargs warnings (see Practicalities.FAQ300A). In addition, I added a section on the
diamond operator, the improved type inference for instance creation expressions and its
limitations (see Technicalities.FAQ400). My thanks to Maurizio Cimadamore of Oracle for a

file:///D|/HomePage/HomepageGenerator/sources/HomePage/GenericsFAQ/JavaGenericsFAQ.pdf
http://www.angelikalanger.com/Articles/Topics.html#JavaGenerics
file:///D|/HomePage/HomepageGenerator/sources/HomePage/GenericsFAQ/JavaGenericsFAQ.pdf

couple of clarifications.
Corrected a typo. My thanks to Prasanth Jalasutram for spotting the typo.

May 2011 Corrected minor omission in Technicalities.FAQ824. My thanks to Gene Carpenter for spotting
the omission.

August 2011 Made a couple of minor adjustments in Practicalities.FAQ300A, Practicalities.FAQ300B, and
Practicalities.FAQ300C due to differences between the prototype implementation and the final
release of Java 7. Specifically, the annotation @SuppressWarnings("varargs") has been
replaced by the @SafeVarargs annotation and the "varargs" warnings became plain
"unchecked" warnings.

February 2012 Corrected some formatting and grammar issues. My thanks to Chris Dailey and Alan
Frankel for spotting the deficiencies.

November 2012 Updated the section on related information such as books and websites (see Information.FAQ002

and InformationFAQ005).
February 2013 Corrected an error in Technicalities.FAQ400D regarding use of the diamond operator on

anonymous inner classes. My thanks to Rabea Gransberger for spotting the bug.
April 2013 Updated the sections related to type parameter inference for invocation of generic methods

and the diamond operator. Type inference has been changed and improved substantially
for Java 8. Numerous situations that resulted in error messages in Java 5, 6, and 7
compile just fine in Java 8. The changes concern Technicalities.FAQ400C, Technicalities.FAQ400D,
Technicalities.FAQ403, Technicalities.FAQ405.
Updated entry TypeParameters.FAQ107 for clarification. The entry discusses the lack of lower
bounds on type parameters, i.e., a feature that does not (yet) exist, but is occasionally
considered useful for certain situations. I added examples in order to illustrate when the
feature would be harmful or useful.

February 2014 Fixed an incorrect example in TypeParameters.FAQ102. My thanks to Dheeru Mundluru for
spotting the bug.

August 2014 Edited by Moez AbdelGawad, who offered to suggest corrections and to fix typos and
grammatical mistakes.

January 2015 Type inference was slightly modified in Java 8 which affected the example in
Technicalities.FAQ404. My thanks to Chad Berchek for bringing it to my attention and to Dan
Smith of Oracle for explaining the type inference modification to me.

Copyright Notice

All text and content found at URLs starting with http://www.AngelikaLanger.com/GenericsFAQ/ (collectively,
"the Java Generics FAQ") are the sole property of Angelika Langer. Copyright @ 2004-2022 by Angelika
Langer. All rights reserved.

Except as specifically granted below, you may not modify, copy, publish, sell, display, transmit (in any form,
or by any means, electronic, mechanical, photocopying, recording, or otherwise), adapt, distribute, store in a
retrieval system, create derivative works, or in any other way use or exploit the contents of the Java Generics
FAQ, without the prior consent of the author.

All rights, titles and interest, including copyrights and other applicable intellectual property rights, in any of the
material belongs to the provider of the material. You do not acquire proprietary interest in such materials by
accessing them on my web site. You must abide by all copyright notices and restrictions on use of the material
accessed.

In particular, I do NOT grant permission to copy the Java Generics FAQ or any part of it to a public Web

file:///D|/HomePage/HomepageGenerator/sources/HomePage/AboutMe.html
file:///D|/HomePage/HomepageGenerator/sources/HomePage/AboutMe.html

server. Link to the original pages instead. (The problem with you putting a page on your server is that the
search engines will find it and send my readers to your server instead. Thus they will be deprived of the most
up-to-date version of the document.)

Non-commercial Use
As a reader of the Java Generics FAQ, you are granted a nonexclusive, nontransferable, limited license to
access and use for non-commercial (research and information) purposes the materials that are made available to
you as the Java Generics FAQ. This license includes the right to download and print out one copy of the Java
Generics FAQ so long as you neither change nor delete any author attribution, legend or copyright notice. I
request that you do not break up the document and attribute the source in such a way that someone can find the
most up-to-date version on the Web, e.g. by including a link to
http://www.AngelikaLanger.com/GenericsFAQ/JavaGenericsFAQ.html. If you redistribute the hardcopy of the
Java Generics FAQ, please send me email informing me of the usage.

Other forms of non-commercial use may be allowed with prior written permission. If permission is granted for
non-commercial use, credit to the copyright owner must be displayed as prescribed by copyright owner in every
exposure of text. To request non-commercial use of copyrighted materials, please email your request and
provide the following information: your name, organization, and title, your request (the text or texts you wish
to quote) and the non-commercial purpose of the use.

Commercial Use

Commercial use on paper, electronic storage devices of all types, online via the Internet or any part of the
World Wide Web or via any other electronic distribution is strictly prohibited without prior payment to the
copyright owner, as well as attribution of ownership of copyright and URL in every exposure of text. To
negotiate legal use of text owned and copyrighted by Angelika Langer, please send me email.

Disclaimers

The author has taken care in the preparation of this material, but makes no expressed or implied warranty of
any kind and assumes no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the information or programs contained herein.

CONTENT NEXT INDEX

file:///D|/HomePage/HomepageGenerator/sources/HomePage/AboutMe.html
file:///D|/HomePage/HomepageGenerator/sources/HomePage/AboutMe.html
file:///D|/HomePage/HomepageGenerator/sources/HomePage/AboutMe.html

Fundamentals of Java Generics
© Copyright 2004-2022 by Angelika Langer. All Rights Reserved.

What are Java generics?
What is the primary purpose of Java generics?
What is the benefit of using Java generics?
What does type-safety mean?

What are Java generics?

Java Generics, sometimes used as a plural noun (generics) and sometimes as a singular noun (Generics), is
a language feature of Java that allows for the definition and use of generic types and methods.

'Java Generics' is a technical term denoting a set of language features related to the definition and use of
generic types and methods. Generic types or methods differ from regular types and methods in that they have
type parameters.

Examples of generic types can be found in the Collections framework of the J2SE 5.0 platform libraries. A
class like LinkedList<E> is a generic type. It has a type parameter E that represents the type of the elements
stored in the list. Instead of just using a LinkedList, not saying anything about the type of elements the list
contains, we can use a LinkedList<String> or a LinkedList<Integer>, thereby specifying that we mean a
list of strings or integral values respectively.

Generic types are instantiated to form parameterized types by providing actual type arguments that replace the
formal type parameters. A class like LinkedList<E> is a generic type, that has a type parameter E.
Instantiations, such as LinkedList<String> or a LinkedList<Integer>, are called parameterized types, and
String and Integer are the respective actual type arguments.

LINK TO THIS Fundamentals.FAQ001

REFERENCES Language Features of Java Generics

What is the primary purpose of Java generics?

Java generics were invented primarily for implementation of generic collections.

The need for generic types stems mainly from the implementation and use of collections, like the ones in the
Java Collections framework. Programmers often want to specify that a collection contains elements of a certain
type, such as a list of integral values or a list of strings. The Collections framework in non-generic Java did not
offer any homogenous collections of elements of the same type. Instead, all collections were holding Object
references and for that reason they were potentially heterogenous, that is, a mix of objects of different types.
This was also visible in the collection APIs: the non-generic collections accepted objects of arbitrary type for
insertion into the collection and returned an Object reference when an element was retrieved from the
collection (see package java.util in Java 1.4).

In non-generic Java, homogenous collections of elements had required implementation of different classes,
such as a class IntegerList and a class StringList for holding integral values and strings respectively.
Naturally, implementing a separate collection class for every conceivable element type is neither feasible nor
desirable. A more reasonable goal is to have a single implementation of the collection class and use it to hold
elements of different types. In other words, rather than implementing a class IntegerList and StringList,

http://java.sun.com/j2se/1.4.2/docs/api/java/util/package-summary.html

we want to have one generic implementation List that can be easily used in either case, as well as in other
unforeseen cases.

This is what generics are for: the implementation of one generic class can be instantiated for a variety of types.
There is one generic class List in the generic collections framework (see package java.util in Java 5.0). It
permits specification of List<Integer>, List<String>, etc. each of which is a homogenous collection of
integral values, strings, etc. In generic Java, the generic class List is a so-called generic class that has a type
parameter. Uses such as List<Integer> and List<String> are so-called parameterized types. They are
instantiations of the generic class, where the type parameter is replaced by the concrete type arguments
Integer and String.

The use of the Java generics language features were initially motivated by the need to have a mechanism for
efficient implementation of homogenous collections, but the language feature is not restricted to collections.
The J2SE 5.0 platform libraries contains numerous examples of generic types and methods that have nothing to
do with collections. Examples are the weak and soft references in package java.lang.ref, which are special
purpose references to objects of a particular type represented by a type parameter. Or the interface Callable in
package java.util.concurrent, which represents a task and has a call method that returns a result of a
particular type represented by a type parameter. Even class Class in package java.lang is a generic class since
Java 5.0, whose type parameter denotes the type that the Class object represents.

LINK TO THIS Fundamentals.FAQ002

REFERENCES
What is the benefit of using Java generics?
What is a parameterized or generic type?
How is a generic type instantiated?

What is the benefit of using Java generics?

Early error detection at compile time.

Using a parameterized type such as LinkedList<String>, instead of LinkedList, enables the compiler to
perform more type checks and requires fewer dynamic casts. This way errors are detected earlier, in the sense
that they are reported at compile-time by means of a compiler error message rather than at runtime by means of
an exception.

Consider the example of a LinkedList<String>. The type LinkedList<String> expresses that the list is a
homogenous list of elements of type String. Based on the stronger information the compiler performs type
checks in order to ensure that a LinkedList<String> contains only strings as elements. Any attempt to add an
alien element is rejected with a compiler error message.

Example (using a parameterized type):

LinkedList<String> list = new LinkedList<String>();
list.add("abc"); // fine
list.add(new Date()); // error

Using a plain LinkedList, the compiler had not issued any message and both elements would have been added
to the list. This is because the non-parameterized LinkedList does not mandate that all elements must be of the
same or any particular type. A non-parameterized list is a sequence of elements of type Object and hence
arbitrary.

Same example (using a non-parameterized type):

LinkedList list = new LinkedList();
list.add("abc"); // fine
list.add(new Date()); // fine as well

http://java.sun.com/j2se/1.5.0/docs/api/java/util/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Callable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html

Since it is ensured that a LinkedList<String> contains strings it is not necessary to cast an element retrieved
from the list to type String.

Example (using a parameterized type):

LinkedList<String> list = new LinkedList<String>();
list.add("abc");
String s = list.get(0); // no cast needed

Using a plain LinkedList, there is no knowledge and no guarantee regarding the type of the element retrieved.
All retrieval methods return an Object reference, which must be cast down to the actual type of the element
retrieved.

Same example (using a non-parameterized type):

LinkedList list = new LinkedList();
list.add("abc");
String s = (String)list.get(0); // cast required

The cast would fail at runtime with a ClassCastException in case the element retrieved is not of type String.
This type of runtime failure cannot happen with a parameterized list because the compiler already prevents
insertion of an alien element into the sequence.

LINK TO THIS Fundamentals.FAQ003

REFERENCES What is a parameterized or generic type?
How is a generic type instantiated?

What does type-safety mean?

In Java, a program is considered type-safe if it compiles without errors and warnings and does not raise any
unexpected ClassCastExceptions at runtime.

The idea is that a well-formed program enables the compiler to perform enough type checks based on static
type information that no unexpected type error can occur at runtime. An unexpected type error in this sense is a
ClassCastException being raised without any visible cast expression in the source code.

LINK TO THIS Fundamentals.FAQ004

REFERENCES How does the compiler translate Java generics?
Why does the compiler add casts when it translates generics?
What is an "unchecked" warning?

CONTENT PREVIOUS NEXT INDEX

Language Features of Java Generics
© Copyright 2004-2022 by Angelika Langer. All Rights Reserved.

Which language features are related to Java generics?

Generic Types

Fundamentals

What is a parameterized or generic type?
How do I define a generic type?
Are there any types that cannot have type parameters?
How is a generic type instantiated?
Why do instantiations of a generic type share the same runtime type?
Can I cast to a parameterized type?
Can I use parameterized types in exception handling?
Can generic types have static members?

Concrete Instantiations

What is a concrete instantiation?
Are different concrete instantiations of the same generic type compatible?
Can I use a concrete parameterized type like any other type?
Can I create an array whose component type is a concrete parameterized type?
Can I declare a reference variable of an array type whose component type is a concrete
parameterized type?
How can I work around the restriction that there are no arrays whose component type is a
concrete parameterized type?
Why is there no class literal for the concrete parameterized type?

Raw Types

What is the raw type?
Why are raw types permitted?
Can I use a raw type like any other type?

Wildcard Instantiations

What is a wildcard instantiation?
What is the unbounded wildcard instantiation?
What is the difference between the unbounded wildcard parameterized type and the raw
type?
Which methods and fields are accessible/inaccessible through a reference variable of a
wildcard type?
Can I use a wildcard parmeterized type like any other type?
Can I create an object whose type is a wildcard parameterized type?
Can I create an array whose component type is a wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is a bounded
wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard
parameterized type?
Can I declare a reference variable of an array type whose component type is an unbounded
wildcard parameterized type?
Can I derive from a wildcard parameterized type?
Why is there no class literal for wildcard parameterized type?

Generic Methods

Fundamentals

What is a generic method?
How do I invoke a generic method?

Type Parameters

Fundamentals

What is a type parameter?
Where is a type parameter visible (or invisible)?

Type Parameter Bounds

What is a type parameter bound?
Which types are permitted as type parameter bounds?
Can I use a type parameter as a type parameter bound?
Can I use different instantiations of a same generic type as bounds of a type parameter?
How can work around the restriction that a type parameter cannot have different
instantiations of a same generic type as its bounds?
Does a bound that is a class type give access to all its public members?
How do I decrypt "Enum<E extends Enum<E>>"?

Usage

Can I use a type parameter like a type?
Can I create an object whose type is a type parameter?
Can I create an array whose component type is a type parameter?
Can I cast to the type that the type parameter stands for?
Can I use a type parameter in exception handling?
Can I derive from a type parameter?
Why is there no class literal for a type parameter?

Scope

Where is a type parameter visible (or invisible)?
Can I use a type parameter as part of its own bounds or in the declaration of other type
parameters?
Can I use the type parameter of an outer type as part of the bounds of the type parameter of
an inner type or a method?

Static Context

Is there one instances of a static field per instantiation of a generic type?
Why can't I use a type parameter in any static context of the generic class?

Type Arguments

Fundamentals

What is a type argument?

Which types are permitted as type arguments?
Are primitive types permitted as type arguments?
Are wildcards permitted as type arguments?
Are type parameters permitted as type arguments?
Do type parameter bounds restrict the set of types that can be used as type arguments?
Do I have to specify a type argument when I want to use a generic type?
Do I have to specify a type argument when I want to invoke a generic method?

Wildcards
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?
What do multi-level wildcards mean?
If a wildcard appears repeatedly in a type argument section, does it stand for the same type?

Wildcard Bounds

What is a wildcard bound?
Which types are permitted as wildcard bounds?
What is the difference between a wildcard bound and a type parameter bound?

Which language features are related to Java generics?

Features for definition and use of generic types and methods.

Java Generics support definition and use of generic types and methods. It provides language features for the
following purposes:

definition of a generic type
definition of a generic method

type parameters
type parameter bounds

type arguments
wildcards
wildcard bounds
wildcard capture

instantiation of a generic type
raw type
concrete instantiation
wildcard instantiation

instantiation of a generic method
automatic type inference
explicit type argument specification

LINK TO THIS LanguageFeatures.FAQ001

REFERENCES What is a parameterized or generic type?
What is a generic method?
What is a type parameter?
What is a bounded type parameter?

What is a type argument?
What is a wildcard?
What is a bounded wildcard?
What is the capture of a wildcard?
How is a generic type instantiated?
What is the raw type?
What is a concrete instantiation?
What is a wildcard instantiation?
How is a generic method instantiated?
What is type argument inference?
What is explicit type argument specification?

CONTENT PREVIOUS NEXT INDEX

Generic And Parameterized Types
© Copyright 2004-2022 by Angelika Langer. All Rights Reserved.

Fundamentals

What is a parameterized or generic type?
How do I define a generic type?
Are there any types that cannot have type parameters?
How is a generic type instantiated?
Why do instantiations of a generic type share the same runtime type?
Can I cast to a parameterized type?
Can I use parameterized types in exception handling?
Can generic types have static members?

Concrete Instantiations

What is a concrete instantiation of a generic type?
Are different concrete instantiations of the same generic type compatible?
Can I use a concrete parameterized type like any other type?
Can I create an array whose component type is a concrete parameterized type?
Can I declare a reference variable of an array type whose component type is a concrete parameterized
type?
How can I work around the restriction that there are no arrays whose component type is a concrete
parameterized type?
Why is there no class literal for the concrete parameterized type?

Raw Types

What is the raw type?
Why are raw types permitted?
Can I use a raw type like any other type?

Wildcard Instantiations

What is a wildcard instantiation?
What is the unbounded wildcard instantiation?
What is the difference between the unbounded wildcard parameterized type and the raw type?
Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Can I use a wildcard instantiation like any other type?
Can I create an object whose type is a wildcard parameterized type?
Can I create an array whose component type is a wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is a bounded wildcard
parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parmeterized type?
Can I declare a reference variable of an array type whose component type is an unbounded wildcard
parameterized type?
Can I derive from a wildcard parameterized type?
Why is there no class literal for wildcard parameterized type?

Generic And Parameterized Types

Fundamentals

What is a parameterized or generic type?

A generic type is a type with formal type parameters. A parameterized type is an instantiation of a generic
type with actual type arguments.

A generic type is a reference type that has one or more type parameters. These type parameters are later
replaced by type arguments when the generic type is instantiated (or declared).

Example (of a generic type):

interface Collection<E> {
 public void add (E x);
 public Iterator<E> iterator();
}

The interface Collection has one type parameter E. The type parameter E is a place holder that will later be
replaced by a type argument when the generic type is instantiated and used. The instantiation of a generic type
with actual type arguments is called a parameterized type.

Example (of a parameterized type):

Collection<String> coll = new LinkedList<String>();

The declaration Collection<String> denotes a parameterized type, which is an instantiation of the generic
type Collection, where the place holder E has been replaced by the concrete type String.

LINK TO THIS GenericTypes.FAQ001

REFERENCES What is a type parameter?

How do I define a generic type?

Like a regular type, but with a type parameter declaration attached.

A generic type is a reference type that has one or more type parameters. In the definition of the generic type,
the type parameter section follows the type name. It is a comma separated list of identifiers and is delimited by
angle brackets.

Example (of a generic type):

class Pair<X,Y> {
 private X first;
 private Y second;

 public Pair(X a1, Y a2) {
 first = a1;
 second = a2;
 }
 public X getFirst() { return first; }
 public Y getSecond() { return second; }

 public void setFirst(X arg) { first = arg; }
 public void setSecond(Y arg) { second = arg; }
}

The class Pair has two type parameters X and Y. They are replaced by type arguments when the generic type
Pair is instantiated. For instance, in the declaration Pair<String, Date> the type parameter X is replaced by
the type argument Stringand Y is replaced by Date.
The scope of the identifiers X and Y is the entire definition of the class. In this scope the two type parameters X
and Y are used like they were types (with some restrictions). In the example above, the type parameters are used
as the argument and return type of instance methods and the types of instance fields.
Type parameters can be declared with bounds. Bounds give access to methods of the unknown type that the
type parameter stands for. In our example, we do not invoke any methods of the unknown types X and Y. For
this reason, the two type parameters are unbounded.

LINK TO THIS GenericTypes.FAQ002

REFERENCES What is a type parameter?
What is a bounded type parameter?
What is a type parameter bound?

Are there any types that cannot have type parameters?

All types, except enum types, anonymous inner classes and exception classes, can be generic..

Almost all reference types can be generic. This includes classes, interfaces, nested (static) classes, nested
interfaces, inner (non-static) classes, and local classes.

The following types cannot be generic:

Anonymous inner classes. They can implement a parameterized interface or extend a parameterized class, but
they cannot themselves be generic classes. A generic anonymous class would be nonsensical. Anonymous
classes do not have a name, but the name of a generic class is needed for declaring an instantiation of the class
and providing the type arguments. Hence, generic anonymous classes would be pointless.

Exception types. A generic class must not directly or indirectly be derived from class Throwable. Generic
exception or error types are disallowed because the exception handling mechanism is a runtime mechanism and
the Java virtual machine does not know anything about Java generics. The JVM would not be capable of
distinguishing between different instantiations of a generic exception type. Hence, generic exception types
would be pointless.

Enum types. Enum types cannot have type parameters. Conceptually, an enum type and its enum values are
static. Since type parameters cannot be used in any static context, the parameterization of an enum type would
be pointless.

LINK TO THIS GenericTypes.FAQ003

REFERENCES Can I use generic / parameterized types in exception handling?
Why are generic exception and error types illegal?
Why are generic enum types illegal?

How is a generic type instantiated?

By providing a type argument per type parameter.

In order to use a generic type we must provide one type argument per type parameter that was declared for the

generic type. The type argument list is a comma separated list that is delimited by angle brackets and follows
the type name. The result is a so-called parameterized type.

Example (of a generic type):

class Pair<X,Y> {
 private X first;
 private Y second;

 public Pair(X a1, Y a2) {
 first = a1;
 second = a2;
 }
 public X getFirst() { return first; }
 public Y getSecond() { return second; }
 public void setFirst(X arg) { first = arg; }
 public void setSecond(Y arg) { second = arg; }
}

If we want to use the generic type Pair we must specify the type arguments that shall replace the place holders
X and Y. A type argument can be a concrete reference type, such as String, Long, Date, etc.

Example (of a concrete parameterized type):

public void printPair(Pair<String,Long> pair) {
 System.out.println("("+pair.getFirst()+","+pair.getSecond()+")");
}

Pair<String,Long> limit = new Pair<String,Long>("maximum",1024L);
printPair(limit);

The instantiation Pair<String,Long> is a concrete parameterized type and it can be used like a regular
reference type (with a couple of restrictions that are discussed later). In the example, we have been using the
concrete parameterized type as argument type of a method, as type of a reference variable, and in a new
expression for creation of an object.

In addition to concrete instantiation there so-called wildcard instantiations. They do not have concrete types as
type arguments, but so-called wildcards. A wildcard is a syntactic construct with a "?" that denotes not just one
type, but a family of types. In its simplest form a wildcard is just a question mark and stands for "all types".

Example (of a wildcard parameterized type):

public void printPair(Pair<?,?> pair) {
 System.out.println("("+pair.getFirst()+","+pair.getSecond()+")");
}

Pair<?,?> limit = new Pair<String,Long>("maximum",1024L);
printPair(limit);

The declaration Pair<?,?> is an example of a wildcard parameterized type, where both type arguments are
wildcards. Each question mark stands for a separate representative from the family of "all types". The resulting
family of instantiations comprises all instantiations of the generic type Pair. (Note: the concrete type
arguments of the family members need not be identical; each "?" stands for a separate type.) A reference
variable or method parameter whose type is a wildcard parameterized type, such as limit and pair in the
example, can refer to any member of the family of types that the wildcard denotes.

It is permitted to leave out the type arguments altogether and not specify type arguments at all. A generictype
without type arguments is called raw type and is only allowed for reasons of compatibility with non-generic
Java code. Use of raw types is discouraged. The Java Language Specification even states that it is possible that
future versions of the Java programming language will disallow the use of raw types.

LINK TO THIS GenericTypes.FAQ004

REFERENCES What is a type argument?
Which types are permitted as type arguments?
What is a wildcard?
What is a concrete parameterized type?
What is a wildcard parameterized type?
Can I use a concrete parameterized type like any other type?
Can I use a wildcard parameterized like any other type?
What is the raw type?

Why do instantiations of a generic type share the same runtime type?

Because of type erasure.

The compiler translates generic and parameterized types by a technique called type erasure. Basically, it elides
all information related to type parameters and type arguments. For instance, the parameterized type
List<String> is translated to type List, which is the so-called raw type. The same happens for the
parameterized type List<Long>; it also appears as List in the bytecode.

After translation by type erasure, all information regarding type parameters and type arguments has
disappeared. As a result, all instantiations of the same generic type share the same runtime type, namely the raw
type.

Example (printing the runtime type of two parameterized types):

System.out.println("runtime type of ArrayList<String>: "+new
ArrayList<String>().getClass());
System.out.println("runtime type of ArrayList<Long> : "+new
ArrayList<Long>().getClass());

prints: runtime type of ArrayList<String>: class java.util.ArrayList
 runtime type of ArrayList<Long> : class java.util.ArrayList

The example illustrates that ArrayList<String> and ArrayList<Long> share the runtime type ArrayList.

LINK TO THIS GenericTypes.FAQ005

REFERENCES How does the compiler translate Java generics?
What is type erasure?
What is the raw type?

Can I cast to a parameterized type?

Yes, you can, but under certain circumstances it is not type-safe and the compiler issues an "unchecked"
warning.

All instantiations of a generic type share the same runtime type representation, namely the representation of the
raw type. For instance, the instantiations of a generic type List, such as List<Date>, List<String>,
List<Long>, etc. have different static types at compile time, but the same dynamic type List at runtime.

A cast consists of two parts:

a static type check performed by the compiler at compile time and
a dynamic type check performed by the virtual machine at runtime.

The static part sorts out nonsensical casts, that cannot succeed, such as the cast from String to Date or from
List<String> to List<Date>.

The dynamic part uses the runtime type information and performs a type check at runtime. It raises a
ClassCastException if the dynamic type of the object is not the target type (or a subtype of the target type) of
the cast. Examples of casts with a dynamic part are the cast from Object to String or from Object to
List<String>. These are the so-called downcasts, from a supertype down to a subtype.

Not all casts have a dynamic part. Some casts are just static casts and require no type check at runtime.
Examples are the casts between primitive types, such as the cast from long to int or byte to char. Another
example of static casts are the so-called upcasts, from a subtype up to a supertype, such as the casts from
String to Object or from LinkedList<String> to List<String>. Upcasts are casts that are permitted, but not
required. They are automatic conversions that the compiler performs implicitly, even without an explicit cast
expression in the source code, which means, the cast is not required and usually omitted. However, if an upcast
appears somewhere in the source code then it is a purely static cast that does not have a dynamic part.

Type casts with a dynamic part are potentially unsafe, when the target type of the cast is a parameterized type.
The runtime type information of a parameterized type is non-exact, because all instantiations of the same
generic type share the same runtime type representation. The virtual machine cannot distinguish between
different instantiations of the same generic type. Under these circumstances the dynamic part of a cast can
succeed although it should not.

Example (of unchecked cast):

void m1() {
 List<Date> list = new ArrayList<Date>();
 ...
 m2(list);
}
void m2(Object arg) {
 ...
 List<String> list = (List<String>) arg; // unchecked warning
 ...
 m3(list);
 ...
}
void m3(List<String> list) {
 ...
 String s = list.get(0); // ClassCastException
 ...
}

The cast from Object to List<String> in method m2 looks like a cast to List<String>, but actually is a cast
from Object to the raw type List. It would succeed even if the object referred to were a List<Date> instead
of a List<String>.

After this successful cast we have a reference variable of type List<String> which refers to an object of type
List<Date>. When we retrieve elements from that list we would expect Strings, but in fact we receive Dates -
and a ClassCastException will occur in a place where nobody had expected it.

We are prepared to cope with ClassCastExceptions when there is a cast expression in the source code, but we
do not expect ClassCastExceptions when we extract an element from a list of strings. This sort of unexpected
ClassCastException is considered a violation of the type-safety principle. In order to draw attention to the
potentially unsafe cast the compiler issues an "unchecked" warning when it translates the dubious cast
expression.

As a result, the compiler emits "unchecked" warnings for every dynamic cast whose target type is a
parameterized type. Note that an upcast whose target type is a parameterized type does not lead to an

"unchecked" warning, because the upcast has no dynamic part.

LINK TO THIS GenericTypes.FAQ006

REFERENCES Why do instantiations of the same generic type share the same runtime type?
What does type-safety mean?
What is the type erasure of a parameterized type?

Can I use parameterized types in exception handling?

No. Exception and error types must not be generic.

It is illegal to define generic type that are directly or indirectly derived from class Throwable. Consequently, no
parameterized types appear anywhere in exception handling.

LINK TO THIS GenericTypes.FAQ007

REFERENCES Why are generic exception and error types illegal?

Can generic types have static members?

Yes.

Generic types can have static members, including static fields, static methods and static nested types. Each of
these static members exists once per enclosing type, that is, independently of the number of objects of the
enclosing type and regardless of the number of instantiations of the generic type that may be used somewhere
in the program. The name of the static member consists - as is usual for static members - of the scope (packages
and enclosing type) and the member's name. If the enclosing type is generic, then the type in the scope
qualification must be the raw type, not a parameterized type.

LINK TO THIS GenericTypes.FAQ008

REFERENCES How do I refer to static members of a generic or parameterized type?
How do I refer to a (non-static) inner class of a generic or parameterized type?
How do I refer to an interface type nested into a generic or parameterized type?
How do I refer to an enum type nested into a generic or parameterized type?
Can I import a particular parameterized type?

Concrete Instantiations

What is a concrete parameterized type?

An instantiation of a generic type where all type arguments are concrete types rather than wildcards.

Examples of concrete parameterized types are List<String>, Map<String,Date>, but not List<? extends
Number> or Map<String,?>.

LINK TO THIS GenericTypes.FAQ101

REFERENCES What is a wildcard?

What is a wildcard parameterized type?

Is List<Object> a supertype of List<String>?

No, different instantiations of the same generic type for different concrete type arguments have no type
relationship.

It is sometimes expected that a List<Object> would be a supertype of a List<String>, because Object is a
supertype of String. This expectation stems from the fact that such a type relationship exists for arrays:
Object[]is a supertype of String[], because Object is a supertype of String. (This type relationship is
known as covariance.) The super-subtype-relationship of the component types extends into the corresponding
array types. No such a type relationship exists for instantiations of generic types. (Parameterized types are not
covariant.)

The lack of a super-subtype-relationship among instantiations of the same generic type has various
consequences. Here is an example.

Example:

void printAll(ArrayList<Object> c) {
 for (Object o : c)
 System.out.println(o);
}

ArrayList<String> list = new ArrayList<String>();
... fill list ...
printAll(list); // error

A ArrayList<String> object cannot be passed as argument to a method that asks for a ArrayList<Object>
because the two types are instantiations of the same generic type, but for different type arguments, and for this
reason they are not compatible with each other.

On the other hand, instantiations of different generic types for the same type argument can be compatible.

Example:

void printAll(Collection<Object> c) {
 for (Object o : c)
 System.out.println(o);
}

List<Object> list = new ArrayList<Object>();
... fill list ...
printAll(list); // fine

A List<Object> is compatible to a Collection<Object> because the two types are instantiations of a generic
supertype and its generic subtype and the instantiations are for the same type argument Object.

Compatibility between instantiations of the same generic type exist only among wildcard instantiations and
concrete instantiations that belong to the family of instantiations that the wildcard instantiation denotes.

LINK TO THIS GenericTypes.FAQ102

REFERENCES What is a concrete parameterized type?
What is a wildcard parameterized type?
How do parameterized types fit into the Java type system?
How does the raw type relate to instantiations of the corresponding generic type?
How do instantiations of a generic type relate to instantiations of other generic types?

How do unbounded wildcard instantiations of a generic type relate to other instantiations of the same generic type?
How do wildcard instantiations with an upper bound relate to other instantiations of the same generic type?
How do wildcard instantiations with a lower bound relate to other instantiations of the same generic type?

Can I use a concrete parameterized type like any other type?

Almost.

Concrete parameterized types are concrete instantiations of a generic type. They are almost like types; there are
only a few restrictions. They can NOT be used for the following purposes:

for creation of arrays
in exception handling
in a class literal
in an instanceof expression

LINK TO THIS GenericTypes.FAQ103

REFERENCES Can I create an array whose component type is a concrete parameterized type?
Can I use parameterized types in exception handling?
Why is there no class literal for the concrete parameterized type?

Can I create an array whose component type is a concrete parameterized type?

No, because it is not type-safe.

Arrays are covariant, which means that an array of supertype references is a supertype of an array of subtype
references. That is, Object[] is a supertype of String[] and a string array can be accessed through a
reference variable of type Object[].

Example (of covariant arrays):

Object[] objArr = new String[10]; // fine
objArr[0] = new String();

In addition, arrays carry runtime type information about their component type, that is, about the type of the
elements contained. The runtime type information regarding the component type is used when elements are
stored in an array in order to ensure that no "alien" elements can be inserted.

Example (of array store check):

Object[] objArr = new String[10];
objArr[0] = new Long(0L); // compiles; fails at runtime with ArrayStoreException

The reference variable of type Object[] refers to a String[], which means that only strings are permitted as
elements of the array. When an element is inserted into the array, the information about the array's component
type is used to perform a type check - the so-called array store check. In our example the array store check will
fail because we are trying to add a Long to an array of Strings. Failure of the array store check is reported by
means of a ArrayStoreException.

Problems arise when an array holds elements whose type is a concrete parameterized type. Because of type
erasure, parameterized types do not have exact runtime type information. As a consequence, the array store
check does not work because it uses the dynamic type information regarding the array's (non-exact) component
type for the array store check.

Example (of array store check in case of parameterized component type):

Pair<Integer,Integer>[] intPairArr = new Pair<Integer,Integer>[10]; // illegal
Object[] objArr = intPairArr;
objArr[0] = new Pair<String,String>("",""); // should fail, but would succeed

If arrays of concrete parameterized types were allowed, then a reference variable of type Object[] could refer
to a Pair<Integer,Integer>[], as shown in the example. At runtime an array store check must be performed
when an array element is added to the array. Since we are trying to add a Pair<String,String> to a
Pair<Integer,Integer>[] we would expect that the type check fails. However, the JVM cannot detect any
type mismatch here: at runtime, after type erasure, objArr would have the dynamic type Pair[] and the
element to be stored has the matching dynamic type Pair. Hence the store check succeeds, although it should
not.

If it were permitted to declare arrays that holds elements whose type is a concrete parameterized type we would
end up in an unacceptable situation. The array in our example would contain different types of pairs instead of
pairs of the same type. This is in contradiction to the expectation that arrays hold elements of the same type (or
subtypes thereof). This undesired situation would most likely lead to program failure some time later, perhaps
when a method is invoked on the array elements.

Example (of subsequent failure):

Pair<Integer,Integer>[] intPairArr = new Pair<Integer,Integer>[10]; // illegal
Object[] objArr = intPairArr;
objArr[0] = new Pair<String,String>("",""); // should fail, but would succeed

Integer i = intPairArr[0].getFirst(); // fails at runtime with ClassCastException

The method getFirst is applied to the first element of the array and it returns a String instead of an Integer
because the first element in the array intPairArr is a pair of strings, and not a pair of integers as one would
expect. The innocent-looking assignment to the Integer variable i will fail with a ClassCastException,
although no cast expression is present in the source code. Such an unexpected ClassCastException is
considered a violation of type-safety.

In order to prevent programs that are not type-safe all arrays holding elements whose type is a concrete
parameterized type are illegal. For the same reason, arrays holding elements whose type is a wildcard
parameterized type are banned, too. Only arrays with an unbounded wildcard parameterized type as the
component type are permitted. More generally, reifiable types are permitted as component type of arrays,
while arrays with a non-reifiable component type are illegal.

LINK TO THIS GenericTypes.FAQ104

REFERENCES What does type-safety mean?
Can I declare a reference variable of an array type whose component type is a concrete parameterized type?
Can I create an array whose component type is a wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parameterized type?
What is a reifiable type?

Can I declare a reference variable of an array type whose component type is a concrete
parameterized type?

Yes, you can, but you should not, because it is neither helpful nor type-safe.

You can declare a reference variable of an array type whose component type is a concrete parameterized type.
Arrays of such a type must not be created. Hence, this reference variable cannot refer to an array of its type.
All that it can refer to is null, an array whose component type is a non-parameterized subtype of the concrete
parameterized type, or an array whose component type is the corresponding raw type. Neither of these cases is
overly useful, yet they are permitted.

Example (of an array reference variable with parameterized component type):

Pair<String,String>[] arr = null; // fine
arr = new Pair<String,String>[2]; // error: generic array creation

The code snippet shows that a reference variable of type Pair<String,String>[]can be declared, but the
creation of such an array is rejected. But we can have the reference variable of type Pair<String,String>[]
refer to an array of a non-parameterized subtype.

Example (of another array reference variable with parameterized component type):

class Name extends Pair<String,String> { ... }

Pair<String,String>[] arr = new Name[2]; // fine

Which raises the question: how useful is such an array variable if it never refers to an array of its type? Let us
consider an example.

Example (of an array reference variable refering to array of subtypes; not recommended):

void printArrayOfStringPairs(Pair<String,String>[] pa) {
 for (Pair<String,String> p : pa)
 if (p != null)
 System.out.println(p.getFirst()+" "+p.getSecond());
}
Pair<String,String>[] createArrayOfStringPairs() {
 Pair<String,String>[] arr = new Name[2];
 arr[0] = new Name("Angelika","Langer"); // fine
 arr[1] = new Pair<String,String>("a","b"); // fine (causes ArrayStoreException)

 return arr;
}
void extractStringPairsFromArray(Pair<String,String>[] arr) {
 Name name = (Name)arr[0]; // fine
 Pair<String,String> p1 = arr[1]; // fine
}
void test() {
 Pair<String,String>[] arr = createArrayOfStringPairs();
 printArrayOfStringPairs(arr);
 extractStringPairsFromArray(arr);
}

The example shows that a reference variable of type Pair<String,String>[] can refer to an array of type
Name[], where Name is a non-parameterized subtype of Pair<String,String>[]. However, using a reference
variable of type Pair<String,String>[] offers no advantage over using a variable of the actual type Name[].
Quite the converse; it is an invitation for making mistakes.

For instance, in the createArrayOfStringPairs method the compiler would permit code for insertion of
elements of type Pair<String,String> into the array though the reference variable of type
Pair<String,String>[]. Yet, at runtime, this insertion will always fail with an ArrayStoreException
because we are trying to insert a Pair into a Name[]. The same would happen if we tried to insert a raw type
Pair into the array; it would compile with an "unchecked" warning and would fail at runtime with an
ArrayStoreException. If we used Name[] instead of Pair<String,String>[] the debatable insertions would
not compile in the first place.

Also, remember that a variable of type Pair<String,String>[] can never refer to an array that contains
elements of type Pair<String,String>. When we want to recover the actual type of the array elements, which
is the subtype Name in our example, we must cast down from Pair<String,String> to Name, as is
demonstrated in the extractStringPairsFromArray method. Here again, using a variable of type Name[]

would be much clearer.

Example (improved):

void printArrayOfStringPairs(Pair<String,String>[] pa) {
 for (Pair<String,String> p : pa)
 if (p != null)
 System.out.println(p.getFirst()+" "+p.getSecond());
}
Name[] createArrayOfStringPairs() {
 Name[] arr = new Name[2];
 arr[0] = new Name("Angelika","Langer"); // fine
 arr[1] = new Pair<String,String>("a","b"); // error
 return arr;
}
void extractStringPairsFromArray(Name[] arr) {
 Name name = arr[0]; // fine (needs no cast)
 Pair<String,String> p1 = arr[1]; // fine
}
void test() {
 Name[] arr = createArrayOfStringPairs();
 printArrayOfStringPairs(arr);
 extractStringPairsFromArray(arr);
}

Since an array reference variable whose component type is a concrete parameterized type can never refer to an
array of its type, such a reference variable does not really make sense. Matters are even worse than in the
example discussed above, when we try to have the variable refer to an array of the raw type instead of a
subtype. First, it leads to numerous "unchecked" warnings because we are mixing use of raw and parameterized
type. Secondly, and more importantly, this approach is not type-safe and suffers from all the deficiencies that
lead to the ban of arrays of concrete instantiation in the first place.

No matter how you put it, you should better refrain from using array reference variable whose component type
is a concrete parameterized type. Note, that the same holds for array reference variable whose component type
is a wildcard parameterized type. Only array reference variable whose component type is an unbounded
wildcard parameterized type make sense. This is because an unbounded wildcard parameterized type is a
reifiable type and arrays with a reifiable component type can be created; the array reference variable can refer
to an array of its type and the deficiencies discussed above simply do not exist for unbounded wildcard arrays.

LINK TO THIS GenericTypes.FAQ104A

REFERENCES What does type-safety mean?
Can I create an array whose component type is a concrete parameterized type?
Can I declare a reference variable of an array type whose component type is a bounded wildcard parameterized type?
Can I create an array whose component type is a wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is an unbounded wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parameterized type?
What is a reifiable type?

How can I work around the restriction that there are no arrays whose component type is a
concrete parameterized type?

You can use arrays of raw types, arrays of unbounded wildcard parameteriezd types, or collections of
concrete parameteriezd types as a workaround.

Arrays holding elements whose type is a concrete parameterized type are illegal.

Example (of illegal array type):

static void test() {
 Pair<Integer,Integer>[] intPairArr = new Pair<Integer,Integer>[10]; // error
 addElements(intPairArr);
 Pair<Integer,Integer> pair = intPairArr[1];
 Integer i = pair.getFirst();
 pair.setSecond(i);
}
static void addElements(Object[] objArr) {
 objArr[0] = new Pair<Integer,Integer>(0,0);
 objArr[1] = new Pair<String,String>("",""); // should fail with
ArrayStoreException
}

The compiler prohibits creation of arrays whose component type is a concrete parameterized type, like
Pair<Integer,Integer> in our example. We discussed in the preceding entry why is it reasonable that the
compiler qualifies a Pair<Integer,Integer>[] as illegal. The key problem is that compiler and runtime
system must ensure that an array is a homogenous sequence of elements of the same type. One of the type
checks, namely the array-store-check performed by the virtual machine at runtime, fails to detect the offending
insertion of an alien element. In the example the second insertion in the addElements method should fail,
because were are adding a pair of strings to an array of integral values, but it does not fail as expected The
reasons were discussed in the preceding entry.

If we cannot use arrays holding elements whose type is a concrete parameterized type, what do we use as a
workaround?

Let us consider 3 conceivable workarounds:

array of raw type
array of unbounded wildcard parameterized type
collection instead of array

Raw types and unbounded wildcard parameterized type are permitted as component type of arrays. Hence they
would be alternatives.

Example (of array of raw type):

static void test() {
 Pair[] intPairArr = new Pair[10];
 addElements(intPairArr);
 Pair<Integer,Integer> pair = intPairArr[1]; // unchecked warning
 Integer i = pair.getFirst(); // fails with
ClassClassException
 pair.setSecond(i);
}
static void addElements(Object[] objArr) {
 objArr[0] = new Pair<Integer,Integer>(0,0);
 objArr[1] = new Pair<String,String>("",""); // should fail, but succeeds
}

Use of the raw type, instead of a parameterized type, as the component type of an array, is permitted. The
downside is that we can stuff any type of pair into the raw type array. There is no guarantee that a Pair[] is
homogenous in the sense that it contains only pairs of the same type. Instead the Pair[] can contain a mix of
arbitrary pair types.

This has numerous side effects. When elements are fetched from the Pair[] only raw type Pair references are
received. Using raw type Pairs leads to unchecked warnings invarious situations, for instance, when we try to

access the pair member or, like in the example, when we assign the Pair to the more specific
Pair<Integer,Integer>, that we really wanted to use.

Let us see whether an array of an unbounded wildcard parameterized type would be a better choice.

Example (of array of unbounded wildcard parameterized type):

static void test() {
 Pair<?,?>[] intPairArr = new Pair<?,?>[10];
 addElements(intPairArr);
 Pair<Integer,Integer> pair = intPairArr[1]; // error
 Integer i = pair.getFirst();
 pair.setSecond(i);
}
static void addElements(Object[] objArr) {
 objArr[0] = new Pair<Integer,Integer>(0,0);
 objArr[1] = new Pair<String,String>("",""); // should fail, but succeeds
}

error: incompatible types
found : Pair<?,?>
required: Pair<java.lang.Integer,java.lang.Integer>
 Pair<Integer,Integer> pair = intPairArr[1];
 ^

A Pair<?,?>[] contains a mix of arbitrary pair types; it is not homogenous and semantically similar to the
raw type array Pair[]. When we retrieve elements from the array we receive references of type Pair<?,?>,
instead of type Pair in the raw type case. The key difference is that the compiler issues an error for the
wildcard pair where it issues "unchecked" warnings for the raw type pair. In our example, we cannot assign the
the Pair<?,?> to the more specific Pair<Integer,Integer>, that we really wanted to use. Also, various
operations on the Pair<?,?> would be rejected as errors.

As we can see, arrays of raw types and unbounded wildcard parameterized types are very different from the
illegal arrays of a concrete parameterized type. An array of a concrete wildcard parameterized type would be a
homogenous sequence of elements of the exact same type. In constrast, arrays of raw types and unbounded
wildcard parameterized type are heterogenous sequences of elements of different types. The compiler cannot
prevent that they contain different instantiations of the generic type.

By using arrays of raw types or unbounded wildcard parameterized types we give away the static type checks
that a homogenous sequence would come with. As a result we must use explicit casts or we risk unexpected
ClassCastExceptions. In the case of the unbounded wildcard parameterized type we are additionally
restricted in how we can use the array elements, because the compiler prevents certain operations on the
unbounded wildcard parameterized type. In essence, arrays of raw types and unbounded wildcard
parameterized types are semantically very different from what we would express with an array of a concrete
wildcard parameterized type. For this reason they are not a good workaround and only acceptable when the
superior efficiency of arrays (as compared to collections) is of paramount importance.

While arrays of concrete parameterized types are illegal, collections of concrete parameterized types are
permitted.

Example (using collections):

static void test() {
 ArrayList<Pair<Integer,Integer>> intPairArr = new
ArrayList<Pair<Integer,Integer>>(10);
 addElements(intPairArr);
 Pair<Integer,Integer> pair = intPairArr.get(1);

 Integer i = pair.getFirst();
 pair.setSecond(i);
}
static void addElements(List<?> objArr) {
 objArr.add(0,new Pair<Integer,Integer>(0,0)); // error
 objArr.add(1,new Pair<String,String>("","")); // error
}

error: cannot find symbol
symbol : method add(int,Pair<java.lang.Integer,java.lang.Integer>)
location: interface java.util.List<capture of ?>
 objArr.add(0,new Pair<Integer,Integer>(0,0));
 ^
error: cannot find symbol
symbol : method add(int,Pair<java.lang.String,java.lang.String>)
location: interface java.util.List<capture of ?>
 objArr.add(1,new Pair<String,String>("",""));
 ^

A collection of a concrete parameterized type is a homogenous sequence of elements and the compiler prevents
any attempt to add alien elements by means of static type checks. To this regard it is semantically similar to the
illegal array, but otherwise collections are very different from arrays. They have different operations; no index
operator, but get and add methods. They have different type relationships; arrays are covariant, while
collections are not. They are not as efficient as arrays; they add overhead in terms of memory footprint and
performance. By using collections of concrete parameterized types as a workaround for the illegal array type
many things change in your implementation.

The different type relationships, for instance, can be observed in the example above and it renders method
addElements pointless. Using arrays we declared the argument type of the addElements method as type
Object[] so that the method would accept all types of arrays. For the collections there is no such supertype as
an Object[]. Type Collection<?>, or type List<?> in our example, comes closest to what the Object[] is
for arrays. But wildcard instantiations of the collection types give only limited access to the collections'
operations. In our example, we cannot insert any elements into the collection of integer pairs through a
reference of type List<?>. A method like addElements does not make any sense any longer; we would need a
method specifically for a collection of Pair<Integer,Integer> instead. In essence, you must design your
APIs differently, when you work with collections instead of arrays.

The most compelling argument against collections is efficiency; arrays are without doubt more efficient. The
argument in favor of collections is type safety; the compiler performs all necessary type checks to ensure that
the collection is a homogenous sequence.

LINK TO THIS GenericTypes.FAQ105

REFERENCES What is a reifiable type?
What is an unbounded wildcard?
What is an unbounded wildcard parameterized type?
What is the raw type?
Can I create an array whose component type is a wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parameterized type?
What is the difference between the unbounded wildcard parameterized type and the raw type?

Why is there no class literal for concrete parameterized types?

Because parameterized type has no exact runtime type representation.

A class literal denotes a Class object that represents a given type. For instance, the class literal String.class
denotes the Class object that represents the type String and is identical to the Class object that is returned
when method getClassis invoked on a String object. A class literal can be used for runtime type checks and
for reflection.

Parameterized types lose their type arguments when they are translated to byte code during compilation in a
process called type erasure. As a side effect of type erasure, all instantiations of a generic type share the same
runtime representation, namely that of the corresponding raw type. In other words, parameterized types do not
have type representation of their own. Consequently, there is no point in forming class literals such as
List<String>.class, List<Long>.class and List<?>.class, since no such Class objects exist. Only the
raw type List has a Class object that represents its runtime type. It is referred to as List.class.

LINK TO THIS GenericTypes.FAQ106

REFERENCES What is type erasure?
What is the raw type?

Raw Types

What is the raw type?

The generic type without any type arguments.

The generic type without any type arguments, like Collection, is called raw type.

The raw type is assignment compatible with all instantiations of the generic type. Assignment of an
instantiation of a generic type to the corresponding raw type is permitted without warnings; assignment of the
raw type to an instantiation yields an "unchecked conversion" warning.

Example (of assignment compatibility):

ArrayList rawList = new ArrayList();
ArrayList<String> stringList = new ArrayList<String>();
rawList = stringList;
stringList = rawList; // unchecked warning

The "unchecked" warning indicates that the compiler does not know whether the raw type ArrayList really
contains strings. A raw type ArrayList can in principle contain any type of object and is similar to a
ArrayList<Object>.

LINK TO THIS GenericTypes.FAQ201

REFERENCES
Why are raw types permitted?
Can I use a raw type like any other type?
How does the raw type relate to instantiations of the corresponding generic type?

Why are raw types permitted?

To facilitate interfacing with non-generic (legacy) code.

Raw types are permitted in the language predominantly to facilitate interfacing with non-generic (legacy) code.

If, for instance, you have a non-generic legacy method that takes a List as an argument, you can pass a
parameterized type such as List<String> to that method. Conversely, if you have a method that returns a
List, you can assign the result to a reference variable of type List<String>, provided you know for some
reason that the returned list really is a list of strings.

Example (of interfacing with legacy code using raw types):

class SomeLegacyClass {
 public void setNames(List c) { ... }
 public List getNames() { ... }
}

final class Test {
 public static void main(String[] args) {
 SomeLegacyClass obj = new SomeLegacyClass();
 List<String> names = new LinkedList<String>();
 ... fill list ...

 obj.setNames(names);

 names = obj.getNames(); // unchecked warning
 }
}

A List<String> is passed to the setNames method that asks for an argument of the raw type List. The
conversion from a List<String> to a List is safe because a method that can handle a heterogeneous list of
objects can certainly cope with a list of strings.

The getNames method returns a raw type List, which we assign to a variable of type List<String>. The
compiler has not enough information to ensure that the list returned really is a list of strings. Despite of that,
the compiler permits the conversion from the raw type List to the more specific type List<String>, in order to
allow this kind of mixing of non-generic and generic Java code. Since the conversion from List to
List<String> is not type-safe, the assignment is flagged as an "unchecked assignment".

The use of raw types in code written after the introduction of genericity into the Java programming language is
discouraged. According to the Java Language Specification, it is possible that future versions of the Java
programming language will disallow the use of raw types.

LINK TO THIS GenericTypes.FAQ202

REFERENCES What are raw types?
Can I use a raw type like any other type?
How does the raw type relate to instantiations of the corresponding generic type?

Can I use a raw type like any other type?

Yes, but certain uses will result in "unchecked" warnings.

Raw types can be used like regular types without any restrictions, except that certain uses will result in
"unchecked" warnings.

Example (of a parameterized type):

interface Copyable<T> {
 T copy();
}
final class Wrapped<Elem extends Copyable<Elem>> {
 private Elem theObject;

 public Wrapped(Elem arg) { theObject = arg.copy(); }

 public void setObject(Elem arg) { theObject = arg.copy(); }

 public Elem getObject() { return theObject.copy(); }

 public boolean equals(Object other) {
 if (other == null) return false;
 if (! (other instanceof Wrapped)) return false;
 return (this.theObject.equals(((Wrapped)other).theObject));
 }
}

Methods or constructors of a raw type have the signature that they would have after type erasure. A method or
constructor call to a raw type generates an unchecked warning if the erasure changes the argument types.

Example (same as above - after type erasure):

interface Copyable {
 Object copy();
}
final class Wrapped {
 private Copyable theObject;

 public Wrapped(Copyable arg) { theObject = arg.copy(); }

 public void setObject(Copyable arg) { theObject = arg.copy(); }

 public Copyable getObject() { return theObject.copy(); }

 public boolean equals(Object other) {
 if (other == null) return false;
 if (! (other instanceof Wrapped)) return false;
 return (this.theObject.equals(((Wrapped)other).theObject));
 }
}

Invocation of a method or constructor, whose argument type changed in the course of type erasure is unsafe and
is flagged as an "unchecked" operation. For instance, the method setObject has the signature void
setObject(Copyable) after type erasure and its invocation results in an "unchecked" warning. The invocation
is unsafe because the compiler cannot ensure that the argument passed to the method is compatible to the
"erased" type that the type parameter Elem stands for.

Example (using the raw type):

class MyString implements Copyable<MyString> {
 private StringBuilder buffer;
 public MyString(String s) { buffer = new StringBuilder(s); }
 public MyString copy() { return new MyString(buffer.toString()); }
 ...
}
class Test {
 private static void test(Wrapped wrapper) {
 wrapper.setObject(new MyString("Deutsche Bank")); // unchecked warning
 Object s = wrapper.getObject();
 }
 public static void main(String[] args) {
 Wrapped<MyString> wrapper = new Wrapped<MyString>(new MyString("Citibank"));
 test(wrapper);
 }
}

If the method's argument type is not changed by type erasure, then the method call is safe. For instance, the
method getObject has the signature Copyable getObject(void) after type erasure and its invocation is safe
and warning-free.

Fields of a raw type have the type that they would have after type erasure. A field assignment to a raw type
generates an unchecked warning if erasure changes the field type. In our example, the field theObject of the
raw type Wrapped is changed by type erasure and is of type Copyable after type erasure.

If the theObject field were public and we could assign to it, the assignment would be unsafe because the
compiler cannot ensure that the value being assigned really is of type Elem. Yet the assignment is permitted
and flagged as an "unchecked" assignment. Reading the field is safe and does not result in a warning.

LINK TO THIS GenericTypes.FAQ203

REFERENCES
What is type erasure?
How does the raw type relate to instantiations of the corresponding generic type?
Can I use a type parameter as part of its own bounds?

Wildcard Instantiations

What is a wildcard parameterized type?

An instantiation of a generic type where the type argument is a wildcard (as opposed to a concrete type).

A wildcard parameterized type is an instantiation of a generic type where at least one type argument is a
wildcard. Examples of wildcard parameterized types are Collection<?>, List<? extends Number>,
Comparator<? super String> and Pair<String,?>. A wildcard parameterized type denotes a family of types
comprising concrete instantiations of a generic type. The kind of the wildcard being used determines which
concrete parameterized types belong to the family. For instance, the wildcard parameterized type
Collection<?> denotes the family of all instantiations of the Collection interface regardless of the type
argument. The wildcard parameterized type List<? extends Number> denotes the family of all list types
where the element type is a subtype of Number. The wildcard parameterized type Comparator<? super
String> is the family of all instantiations of the Comparator interface for type argument types that are
supertypes of String.

A wildcard parameterized type is not a concrete type that could appear in a new expression. A wildcard
parameterized type is similar to an interface type in the sense that reference variables of a wildcard
parameterized type can be declared, but no objects of the wildcard parameterized type can be created. The
reference variables of a wildcard parameterized type can refer to an object that is of a type that belongs to the
family of types that the wildcard parameterized type denotes.

Examples:

Collection<?> coll = new ArrayList<String>();
List<? extends Number> list = new ArrayList<Long>();
Comparator<? super String> cmp = new RuleBasedCollator("< a< b< c< d");
Pair<String,?> pair = new Pair<String,String>();

Counter Example:

List<? extends Number> list = new ArrayList<String>(); // error

Type String is not a subtype of Number and consequently ArrayList<String> does not belong to the family
of types denoted by List<? extends Number>. For this reason the compiler issues an error message.

LINK TO THIS GenericTypes.FAQ301

REFERENCES What is a wildcard?
Can I use a wildcard parameterized type like any other type?

What is the unbounded wildcard parameterized type?

An instantiation of a generic type where all type arguments are the unbounded wildcard "?".

Examples of unbounded wildcard parameterized types are Pair<?,?> and Map<?,?>.

The unbounded wildcard parameterized type is assignment compatible with all instantiations of the
correspinding generic type. Assignment of another instantiation to the unbounded wildcard instantiation is
permitted without warnings; assignment of the unbounded wildcard instantiation to another instantiation is
illegal.

Example (of assignment compatibility):

ArrayList<?> anyList = new ArrayList<Long>();
ArrayList<String> stringList = new ArrayList<String>();
anyList = stringList;
stringList = anyList; // error

The unbounded wildcard parameterized type is kind of the supertype of all other instantiations of the generic
type: "subtypes" can be assigned to the "unbounded supertype", not vice versa.

LINK TO THIS GenericTypes.FAQ302

REFERENCES How do unbounded wildcard instantiations of a generic type relate to other instantiations of the same generic type?

What is the difference between the unbounded wildcard parameterized type and the raw type?

The compiler issues error messages for an unbounded wildcard parameterized type while it only reports
"unchecked" warnings for a raw type.

In code written after the introduction of genericity into the Java programming language you would usually
avoid use of raw types, because it is discouraged and raw types might no longer be supported in future versions
of the language (according to the Java Language Specification). Instead of the raw type you can use the
unbounded wildcard parameterized type.

The raw type and the unbounded wildcard parameterized type have a lot in common. Both act as kind of a
supertype of all instantiations of the corresponding generic type. Both are so-called reifiable types. Reifiable
types can be used in instanceof expressions and as the component type of arrays, where non-reifiable types
(such as concrete and bounded wildcard parameterized type) are not permitted.

In other words, the raw type and the unbounded wildcard parameterized type are semantically equivalent. The
only difference is that the compiler applies stricter rules to the unbounded wildcard parameterized type than to
the corresponding raw type. Certain operations performed on the raw type yield "unchecked" warnings. The
same operations, when performed on the corresponding unbounded wildcard parameterized type, are rejected as
errors.

LINK TO THIS GenericTypes.FAQ303

REFERENCES What is the raw type?
What is the unbounded wildcard parameterized type?
What is a reifiable type?
How do parameterized types fit into the Java type system?
How does the raw type relate to instantiations of the corresponding generic type?
How do instantiations of a generic type relate to instantiations of other generic types?
How do unbounded wildcard instantiations of a generic type relate to other instantiations of the same generic type?
How do wildcard instantiations with an upper bound relate to other instantiations of the same generic type?
How do wildcard instantiations with a lower bound relate to other instantiations of the same generic type?

Which methods and fields are accessible/inaccessible through a reference variable of a wildcard
parameterized type?

It depends on the kind of wildcard.

Using an object through a reference variable of a wildcard parameterized type is restricted. Consider the
following class:

Example (of a generic class):

class Box<T> {
 private T t;
 public Box(T t) { this.t = t; }
 public void put(T t) { this.t = t;}
 public T take() { return t; }
 public boolean equalTo(Box<T> other) { return this.t.equals(other.t); }
 public Box<T> copy() { return new Box<T>(t); }
}

When we use a reference variable of a wildcard instantiation of type Box to access methods and fields of the
referenced object the compiler would reject certain invocations.

Example (of access through a wildcard parameterized type):

class Test {
 public static void main(String[] args) {
 Box<?> box = new Box<String>("abc");

 box.put("xyz"); // error
 box.put(null); // ok

 String s = box.take(); // error
 Object o = box.take(); // ok

 boolean equal = box.equalTo(box); // error
 equal = box.equalTo(new Box<String>("abc")); // error

 Box<?> box1 = box.copy(); // ok
 Box<String> box2 = box.copy(); // error
 }
}

In a wildcard parameterized type such as Box<?> the type of the field and the argument and the return types of
the methods would be unknown. It is like the field t would be of type "?" and the put method would take an
argument of type "?" and the take method would return a "?" and so on.

In this situation the compiler does not let us assign anything to the field or pass anything to the put method.
The reason is that the compiler cannot make sure that the object that we are trying to pass as an argument to a

method is of the expected type, since the expected type is unknown. Similarly, the compiler does not know of
which type the field is and cannot check whether we are assigning an object of the correct type, because the
correct type is not known.

In contrast, the take method can be invoked and it returns an object of an unknown type, which we can assign
to a reference variable of type Object.

Similar effects can be observed for methods such as like equalTo and copy, which have a parameterized
argument or return type and the type parameter T appears as type argument of the parameterized argument or
return type.

Consider a generic class with methods that use the type parameter in the argument or return type of its
methods:

Example (of a generic class):

class Box<T> {
 private T t;
 public Box(T t) { this.t = t; }
 public Box(Box<? extends T> box) { t = box.t; }
 ...
 public boolean equalTo(Box<T> other) { return this.t.equals(other.t); }
 public Box<T> copy() { return new Box<T>(t); }

 public Pair<T,T> makePair() { return new Pair<T,T>(t,t); }
 public Class<? extends T> getContentType() { ... }
 public int compareTo(Comparable<? super T> other) { return other.compareTo(t);
}
}

The type parameter T can appear as the type argument of a parameterized argument or return type, like in
method makePair, which returns a Pair<T,T>. But it can also appear as part of the type argument of a
parameterized argument or return type, namely as bound of a wildcard, like in method geteContentType,
which returns a value of type Class<? extends T>. Which methods can or must not be invoked through a
wildcard instantiation depends not only on the type of the wildcard instantiation (unbounded or bounded with
upper or lower bound), but also on the use of the type parameter (as type argument or as wildcard bound).

The restriction are fairly complex in detail, because they depend on the type of the wildcard (unbounded or
bounded with upper or lower bound). So far we have only seen Box<?>, that is, the unbounded wildcard
instantiation. Which fields and methods are accessible through references of other wildcard instantiations? In
addition, the rules depend on the way in which a method uses the type parameter in the method signatures (as
the type of an argument or the return type or as the type argument of a parameterized argument or return type).
A comprehensive discussion can be found in the FAQ entries listed in the reference section below.

LINK TO THIS GenericTypes.FAQ304

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized

type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized

type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized

type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a

wildcard parameterized type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a

wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a

wildcard parameteriezd type?
In a wildcard parameterized type, can I read and write fields whose type is the type parameter?

Can I use a wildcard parameterized type like any other type?

No. A wildcard parameterized type is not a type in the regular sense (different from a non-parameterized
class/interface or a raw type).

Wildcard parameterized types can be used for typing (like non-parameterized classes and interfaces):

as argument and return types of methods
as type of a field or local reference variable
as component type of an array
as type argument of other parameterized types
as target type in casts

Wildcard parameterized type can NOT be used for the following purposes (different from non-parameterized
classes and interfaces):

for creation of objects
for creation of arrays (except unbounded wildcard)
in exception handling
in instanceof expressions (except unbounded wildcard)
as supertypes
in a class literal

LINK TO THIS GenericTypes.FAQ305

REFERENCES

Can I create an object whose type is a wildcard parameterized type?

No, not directly.

Objects of a wildcard parameterized type are not particularly useful, mainly because there is not much you can
do with the object. You can access an object of a wildcard parameterized type only through a reference of that
wildcard parameterized type, and such a reference gives only restricted access to the referenced object.
Basically, the wildcard parameterized type is too abstract to be useful. For this reason, the creation of objects
of a wildcard parameterized type is discouraged: it is illegal that a wildcard parameterized type appears in a new
expression.

Example (of illegal creation of objects of a wildcard parameterized type):

ArrayList<String> list = new ArrayList<String>();
... populate the list ...

ArrayList<?> coll1 = new ArrayList<?>(); // error
ArrayList<?> coll2 = new ArrayList<?>(10); // error
ArrayList<?> coll3 = new ArrayList<?>(list); // error

The compiler rejects all attempts to create an object of the wildcard type ArrayList<?>.

In a way, a wildcard parameterized type is like an interface type: you can declare reference variables of the
type, but you cannot create objects of the type. A reference variable of an interface type or a wildcard
parameterized type can refer to an object of a compatible type. For an interface, the compatible types are the
class (or enum) types that implement the interface. For a wildcard parameterized type, the compatible types are
the concrete instantiations of the corresponding generic type that belong to the family of instantiations that the
wildcard denotes.

Example (comparing interface and wildcard parameterized type):

Cloneable clon1 = new Date();
Cloneable clon2 = new Cloneable(); // error

ArrayList<?> coll1 = new ArrayList<String>();
ArrayList<?> coll2 = new ArrayList<?>(); // error

The code snippet above illustrates the similarity between an interface and a wildcard parameterized type, using
the interface Cloneable and the wildcard parameterized type ArrayList<?> as examples. We can declare
reference variables of type Cloneable and ArrayList<?>, but we must not create objects of type Cloneable
and ArrayList<?>.

Interestingly, the compiler's effort to prevent the creation of objects of a wildcard parameterized type can be
circumvented. It is unlikely that you will ever want to create an object of a wildcard parameterized type, but
should you ever need one, there's the workaround (see TechnicalDetails.FAQ609).

LINK TO THIS GenericTypes.FAQ306

REFERENCES What is a wildcard parameterized type?
Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type? Can I use a wildcard instantiation like any

other type?
What is type argument inference?
Is it really impossible to create an object whose type is a wildcard parameterized type?

Can I create an array whose component type is a wildcard parameterized type?

No, because it is not type-safe.

The rationale is the same as for concrete parameterized types: a wildcard parameterized type, unless it is an
unbounded wildcard parameterized type, is a non-reifiable type and arrays of non-reifiable types are not type-
safe.

The array store check cannot be performed reliably because a wildcard parameterized type that is not an
unbounded wildcard parameterized type has a non-exact runtime type.

Example (of the consequences):

Object[] numPairArr = new Pair<? extends Number,? extends Number>[10]; // illegal
numPairArr[0] = new Pair<Long,Long>(0L,0L); // fine
numPairArr[0] = new Pair<String,String>("",""); // should fail, but would succeed

The array store check would have to check whether the pair added to the array is of type Pair<? extends
Number,? extends Number> or of a subtype thereof. Obviously, a Pair<String,String> is not of a matching
type and should be rejected with an ArrayStoreException. But the array store check does not detect any type
mismatch, because the JVM can only check the array's runtime component type, which is Pair[] after type
erasure, against the element's runtime type, which is Pair after type erasure.

LINK TO THIS GenericTypes.FAQ307

REFERENCES What does type-safety mean?
Can I create an array whose component type is a concrete parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parameterized type?
What is a reifiable type?

Can I declare a reference variable of an array type whose component type is a bounded wildcard
parameterized type?

http://www.angelikalanger.com/GenericsFAQ/FAQSections/ParameterizedTypes.html#Which%20methods%20and%20fields%20are%20accessible/inaccessible%20through%20a%20reference%20variable%20of%20a%20wildcard%20type?
http://www.angelikalanger.com/GenericsFAQ/FAQSections/ParameterizedTypes.html#Can%20I%20use%20a%20wildcard%20instantiation%20like%20any%20other%20type?
http://www.angelikalanger.com/GenericsFAQ/FAQSections/ParameterizedTypes.html#Can%20I%20use%20a%20wildcard%20instantiation%20like%20any%20other%20type?

Yes, you can, but you should not, because it is neither helpful nor type-safe.

The rationale is the same as for concrete parameterized types: a wildcard parameterized type, unless it is an
unbounded wildcard parameterized type, is a non-reifiable type and arrays of non-reifiable types must not be
created. Hence it does not make sense to have a reference variable of such an array type because it can never
refer to array of its type. All that it can refer to is null, an array whose component type is a non-parameterized
subtype of the instantiations that belong to the type family denoted by the wildcard, or an array whose
component type is the corresponding raw type. Neither of these cases is overly useful, yet they are permitted.

Example (of an array reference variable with wildcard parameterized component type):

Pair<? extends Number,? extends Number>[] arr = null; // fine
arr = new Pair<? extends Number,? extends Number>[2]; // error: generic array
creation

The code snippet shows that a reference variable of type Pair<? extends Number,? extends Number>[] can
be declared, but the creation of such an array is illegal. But we can have the reference variable of type Pair<?
extends Number,? extends Number>[] refer to an array of a non-parameterized subtype of any of the
concrete instantiations that belong to the type family denoted by Pair<? extends Number,? extends
Number>. (Remember, wildcard parameterized types cannot be used as supertypes; hence a non-parameterized
subtype must be a subtype of a concrete parameterized type.)

Example (of another array reference variable with parameterized component type):

class Point extends Pair<Double,Double> { ... }

Pair<? extends Number,? extends Number>[] arr = new Point[2]; // fine

Using a reference variable of type Pair<? extends Number,? extends Number>[] offers no advantage over
using a variable of the actual type Point[]. Quite the converse; it is an invitation for making mistakes.

Example (of an array reference variable refering to array of subtypes; not recommended):

Pair<? extends Number,? extends Number>[] arr = new Point[2];
arr[0] = new Point(-1.0,1.0); // fine
arr[1] = new Pair<Number,Number>(-1.0,1.0); // fine (causes ArrayStoreException)
arr[2] = new Pair<Integer,Integer>(1,2); // fine (causes ArrayStoreException)

The compiler permits code for insertion of elements of type Pair<Number,Number> or
Pair<Integer,Integer> into the array through the reference variable of type Pair<? extends Number,?
extends Number>[]. Yet, at runtime, this insertion will always fail with an ArrayStoreException because we
are trying to insert a Pair into a Point[]. The debatable insertions would be flagged as errors and thereby
prevented if we used the actual type of the array, namely Point[] instead of Pair<?extends Number,?
extends Number>[] .

In essence, you should better refrain from using array reference variable whose component type is a wildcard
parameterized type. Note, that the same holds for array reference variable whose component type is a concrete
parameterized type. Only an array reference variable whose component type is an unbounded wildcard
parameterized type make sense. This is because an unbounded wildcard parameterized type is a reifiable type
and arrays with a reifiable component type can be created; the array reference variable can refer to an array of
its type and the deficiencies discussed above simply do not exist for unbounded wildcard arrays.

LINK TO THIS GenericTypes.FAQ307A

REFERENCES What does type-safety mean?
Can I create an array whose component type is a wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is a concrete parameterized type?
Can I create an array whose component type is a concrete parameterized type?

Can I declare a reference variable of an array type whose component type is an unbounded wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parameterized type?
What is a reifiable type?

Why is it allowed to create an array whose component type is an unbounded wildcard
parameterized type?

Because it is type-safe.

The rationale is related to the rule for other instantiations of a generic type: an unbounded wildcard
parameterized type is a reifiable type and arrays of reifiable types are type-safe, in contrast to arrays of non-
reifiable types, which are not safe and therefore illegal. The problem with the unreliable array store check (the
reason for banning arrays with a non-reifiable component type) does not occur if the component type is
reifiable.

Example (of array of unbounded wildcard parameterized type):

Object[] pairArr = new Pair<?,?>[10]; // fine
pairArr[0] = new Pair<Long,Long>(0L,0L); // fine
pairArr[0] = new Pair<String,String>("",""); // fine
pairArr[0] = new ArrayList<String>(); // fails with ArrayStoreException

The array store check must check whether the element added to the array is of type Pair<?,?> or of a subtype
thereof. In the example the two pairs, although of different type, are perfectly acceptable array elements. And
indeed, the array store check, based on the non-exact runtime type Pair, accepts the two pairs and correctly
sorts out the "alien" ArrayList object as illegal by raising an ArrayStoreException. The behavior is exactly
the same as for an array of the raw type, which is not at all surprising because the raw type is a reifiable type as
well.

LINK TO THIS GenericTypes.FAQ308

REFERENCES What is a reifiable type?
What does type-safety mean?
What is the raw type?
Can I create an array whose component type is a concrete parameterized type?
Can I create an array whose component type is a wildcard parameterized type?

Can I declare a reference variable of an array type whose component type is an unbounded
wildcard parameterized type?

Yes.

An array reference variable whose component type is an unbounded wildcard parameterized type (such as
Pair<?,?>[]) is permitted and useful. This is in contrast to array reference variables with a component type
that is a concrete or bounded wildcard parameterized type (such as Pair<Long,Long>[]or Pair<? extends
Number,? extends Number>[]); the array reference variable is permitted, but not overly helpful.

The difference stems from the fact that an unbounded wildcard parameterized type is a reifiable type and arrays
with a reifiable component type can be created. Concrete and bounded wildcard parameterized types are non-
reifiable types and arrays with a non-reifiable component type cannot be created. As a result, an array variable
with a reifiable component type can refer to array of its type, but this is not possible for the non-reifiable
component types.

Example (of array reference variables with parameterized component types):

Pair<?,?>[] arr

 = new Pair<?,?>[2]; // fine

Pair<? extends Number,? extends Number>[] arr
 = new Pair<? extends Number,? extends Number>[2]; // error: generic array
creation

Pair<Double,Double>[] arr
 = new Pair<Double,Double>[2]; // error: generic array creation

The examples above demonstrate that unbounded wildcard parameterized types are permitted as component
type of an array, while other instantiations are not permitted. In the case of a non-reifiable component type the
array reference variable can be declared, but it cannot refer to an array of its type. At most it can refer to an
array of a non-parameterized subtype (or an array of the corresponding raw type), which opens opportunities
for mistakes, but does not offer any advantage.

LINK TO THIS GenericTypes.FAQ308A

REFERENCES What is a reifiable type?
Can I create an array whose component type is a wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is a concrete parameterized type?
Can I create an array whose component type is a concrete parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is a bounded wildcard parameterized type?

Can I derive from a wildcard parameterized type?

No, a wildcard parameterized type is not a supertype.

Let us scrutinize an example and see why a wildcard parameterized type cannot be a supertype. Consider the
generic interface Comparable.

Example (of a generic interface):

interface Comparable<T> {
 int compareTo(T arg);
}

If it were allowed to subtype from a wildcard instantiation of Comparable, neither we nor the compiler would
know what the signature of the compareTo method would be.

Example (of illegal use of a wildcard parameterized type as a supertype):

class MyClass implements Comparable<?>{ // error
 public int compareTo(??? arg) { ... }
}

The signatures of methods of a wildcard parameterized type are undefined. We do not know what type of
argument the compareTo method is supposed to accept. We can only subtype from concrete instantiations of the
Comparable interface, so that the signature of the compareTo method is well-defined.

Example (of legal use of a concrete parameterized type as a supertype):

class MyClass implements Comparable<MyClass> { // fine
 public int compareTo(MyClass arg) { ... }
}

Note that the raw type is, of course, acceptable as a supertype, different from the wildcard parameterized types
including the unbounded wildcard parameterized type.

Example (of legal use of a raw type as a supertype):

class MyClass implements Comparable{ // fine
 public int compareTo(Object arg) { ... }
}

LINK TO THIS GenericTypes.FAQ309

REFERENCES What is the raw type?
What is a wildcard parameterized type?
What is the unbounded wildcard parameterized type?
What is the difference between the unbounded wildcard parameterized type and the raw type?

Why is there no class literal for wildcard parameterized types?

Because a wildcard parameterized type has no exact runtime type representation.

The rationale is the same as for concrete parameterized types.

Wildcard parameterized types lose their type arguments when they are translated to byte code in a process
called type erasure. As a side effect of type erasure, all instantiations of a generic type share the same runtime
representation, namely that of the corresponding raw type. In other words, parameterized types do not have
type representation of their own. Consequently, there is no point to forming class literals such as List<?
>.class, List<? extends Number>.class and List<Long>.class, since no such Class objects exist. Only
the raw type List has a Class object that represents its runtime type. It is referred to as List.class.

LINK TO THIS GenericTypes.FAQ310

REFERENCES What is type erasure?
What is the raw type?
Why is there no class literal for concrete parameterized types?

CONTENT PREVIOUS NEXT INDEX

Generic Methods
© Copyright 2004-2022 by Angelika Langer. All Rights Reserved.

Fundamentals

What is a generic method?
How do I invoke a generic method?

Generic Methods

What is a generic method?

A method with type parameters.

Not only types can be generic, but methods can be generic, too. Static and non-static methods as well as
constructors can have type parameters. The syntax for declaration of the formal type parameters is similar to
the syntax for generic types. The type parameter section is delimited by angle brackets and appears before the
method's return type. Its syntax and meaning is identical to the type parameter list of a generic type.

Here is the example of a generic max method that computes the greatest value in a collection of elements of an
unknown type A.

Example (of a generic method):

class Collections {
 public static <A extends Comparable<A>> A max(Collection<A> xs) {

 Iterator<A> xi = xs.iterator();
 A w = xi.next();
 while (xi.hasNext()) {

 A x = xi.next();
 if (w.compareTo(x) < 0) w = x;

 }
 return w;

 }
}

The max method has one type parameter, named A. It is a place holder for the element type of the collection that
the method works on. The type parameter has a bound; it must be a type A that is a subtype of Comparable<A>,
i.e., a type that can be compared to elements of itself.

LINK TO THIS GenericMethods.FAQ001

REFERENCES What is a generic type?

How do I define a generic type?

What is a type parameter?
What is a bounded type parameter?

How do I invoke a generic method?

Usually by calling it. Type arguments for generic methods need not be provided explicitly; they are almost

always automatically inferred.

Generic methods are invoked like regular non-generic methods. The type parameters are inferred from the
invocation context.

Example (of invocation of a generic method; taken from the preceding item):

class Collections {
 public static <A extends Comparable<A>> A max (Collection<A> xs) {
 Iterator<A> xi = xs.iterator();
 A w = xi.next();
 while (xi.hasNext()) {
 A x = xi.next();
 if (w.compareTo(x) < 0) w = x;
 }
 return w;
 }
}
final class Test {
 public static void main (String[] args) {
 LinkedList<Long> list = new LinkedList<Long>();
 list.add(0L);
 list.add(1L);
 Long y = Collections.max(list);
 }
}

In our example, the compiler would automatically invoke an instantiation of the max method with the type
argument Long, that is, the formal type parameter A is replaced by type Long. Note that we do not have to
explicitly specify the type argument. The compiler automatically infers the type argument by taking a look at
the type of the arguments provided to the method invocation. The compiler finds that a Collection<A> is asked
for and that a LinkedList<Long> is provided. From this information the compiler concludes at compile time
that A must be replaced by Long.

LINK TO THIS GenericMethods.FAQ002

REFERENCES What is type argument inference?
What explicit type argument specification?
What happens if a type parameter does not appear in the method parameter list?
Why doesn't type argument inference fail when I provide inconsistent method arguments?

CONTENT PREVIOUS NEXT INDEX

Type Parameters
© Copyright 2004-2011 by Angelika Langer. All Rights Reserved.

Fundamentals

What is a type parameter?
What is a bounded type parameter?

Type Parameter Bounds

What is a type parameter bound?
Which types are permitted as type parameter bounds?
Can I use a type parameter as a type parameter bound?
Can I use different instantiations of a same generic type as bounds of a type parameter?
How can I work around the restriction that a type parameter cannot have different instantiations of a
same generic type as its bounds?
Does a bound that is a class type give access to all its public members?
How do I decrypt "Enum<E extends Enum<E>>"?
Why is there no lower bound for type parameters?

Usage

Can I use a type parameter like a type?
Can I create an object whose type is a type parameter?
Can I create an array whose component type is a type parameter?
Can I cast to the type that the type parameter stands for?
Can I use a type parameter in exception handling?
Can I derive from a type parameter?
Why is there no class literal for a type parameter?

Scope

Where is a type parameter visible (or invisible)?
Can I use a type parameter as part of its own bounds?
Can I use the type parameter of an outer type as part of the bounds of the type parameter of an inner type
or a method?

Static Context

Is there one instances of a static field per instantiation of a generic type?
Why can't I use a type parameter in any static context of a generic class?

Type Parameters

Fundamentals

What is a type parameter?

A place holder for a type argument.

Generic types have one or more type parameters.

Example of a parameterized type:

interface Comparable<E> {
 int compareTo(E other);
}

The identifier E is a type parameter. Each type parameter is replaced by a type argument when an instantiation
of the generic type, such as Comparable<Object> or Comparable<? extends Number>, is used.

LINK TO THIS TypeParameters.FAQ001

REFERENCES How is a generic type defined?
What is a bounded type parameter?
Where is a type parameter visible (or invisible)?

What is a bounded type parameter?

A type parameter with one or more bounds. The bounds restrict the set of types that can be used as type
arguments and give access to the methods defined by the bounds.

When you declare a type parameter T and use it in the implementation of a generic type or method, the type
parameter T still denotes an unknown type. The compiler knows that T is a place holder for a type, but it does
not know anything about the type. This is okay in some implementations, but insufficient in others.

Example (of a generic type without bounds):

public class Hashtable<Key,Data> {
 ...
 private static class Entry<Key,Data> {
 private Key key;
 private Data value;
 private int hash;
 private Entry<Key,Data> next;
 ...
 }
 private Entry<Key,Data>[] table;
 ...
 public Data get(Key key) {
 int hash = key.hashCode();
 for (Entry<Key,Data> e = table[hash & hashMask]; e != null; e = e.next) {
 if ((e.hash == hash) && e.key.equals(key)) {
 return e.value;
 }
 }
 return null;
 }
}

The implementation of class Hashtable invokes the methods hashCode and equals on the unknown Key type.
Since hashCode and equals are methods defined in class Object and available for all reference types, not
much need to be known about the unknown Key type. This changes substantially, when we look into the
implementation of sorted sequence.

Example (of a generic type, so far without bounds):

public interface Comparable<T> {
 public int compareTo(T arg);
}
public class TreeMap<Key,Data>{
 private static class Entry<K,V> {
 K key;
 V value;
 Entry<K,V> left;
 Entry<K,V> right;
 Entry<K,V> parent;
 }
 private transient Entry<Key,Data> root;
 ...
 private Entry<Key,Data> getEntry(Key key) {
 Entry<Key,Data> p = root;
 Key k = key;
 while (p != null) {
 int cmp = k.compareTo(p.key); // error
 if (cmp == 0)
 return p;
 else if (cmp < 0)
 p = p.left;
 else
 p = p.right;
 }
 return null;
 }
 public boolean containsKey(Key key) {
 return getEntry(key) != null;
 }
 ...
}

The implementation of class TreeMap invokes the method compareTo on the unknown Key type. Since
compareTo is not defined for arbitrary types the compiler refuses to invoke the compareTo method on the
unknown type Key because it does not know whether the key type has a compareTo method.

In order to allow the invocation of the compareTo method we must tell the compiler that the unknown Key type
has a compareTo method. We can do so by saying that the Key type implements the Comparable<Key>
interface. We can say so by declaring the type parameter Key as a bounded parameter.

Example (of the same generic type, this time with bounds):

public interface Comparable<T> {
 public int compareTo(T arg);
}
public class TreeMap<Key extends Comparable<Key>,Data>{
 private static class Entry<K,V> {
 K key;
 V value;
 Entry<K,V> left = null;
 Entry<K,V> right = null;
 Entry<K,V> parent;
 }
 private transient Entry<Key,Data> root = null;
 ...

 private Entry<Key,Data> getEntry(Key key) {
 Entry<Key,Data> p = root;
 Key k = key;
 while (p != null) {
 int cmp = k.compareTo(p.key);
 if (cmp == 0)
 return p;
 else if (cmp < 0)
 p = p.left;
 else
 p = p.right;
 }
 return null;
 }
 public boolean containsKey(Key key) {
 return getEntry(key) != null;
 }
 ...
}

In the example above, the type parameter Key has the bound Comparable<Key>. Specification of a bound has
two effects:

It gives access to the methods that the bound specifies. In the example, the bound Comparable<Key>
gives access to the compareTo method that we want to invoke in the implementation of our TreeMap
class.

Only types "within bounds" can be used for instantiation of the generic type. In the example, a
parameterized type such as TreeMap<Number,String> would be rejected, because the type Number is not
a subtype of Comparable<Number>. A parameterized type like TreeMap<String,String> would be
accepted, because the type String is within bounds, i.e. is a subtype of Comparable<String>.

Note that the suggested bound Comparable<Key> in this example is not the best conceivable solution. A better
bound, that is more relaxed and allows a larger set of type arguments, would be Comparable<? super Key>. A
more detailed discussion can be found in a separate FAQ entry (click here).

LINK TO THIS TypeParameters.FAQ002

REFERENCES When would I use a wildcard parameterized with a lower bound?
What is a type parameter bound?
Which types are permitted as type parameter bounds?
Can I use different instantiations of a same generic type as bounds of a type parameteer?
Does a bound that is a class type give access to all its public members?
Can I use a type parameter as part of its own bounds or in the declaration of other type parameters?

Type Parameter Bounds

What is a type parameter bound?

A reference type that is used to further describe a type parameter. It restricts the set of types that can be
used as type arguments and gives access to the non-static methods that it defines.

A type parameter can be unbounded. In this case any reference type can be used as type argument to replace

the unbounded type parameter in an instantiation of a generic type.

Alternatively can have one or several bounds. In this case the type argument that replaces the bounded type
parameter in an instantiation of a generic type must be a subtype of all bounds.

The syntax for specification of type parameter bounds is:

<TypeParameter extends Class & Interface1 & ... & InterfaceN>

A list of bounds consists of one class and/or several interfaces.

Example (of type parameters with several bounds):

class Pair<A extends Comparable<A> & Cloneable,
 B extends Comparable & Cloneable>
 implements Comparable<Pair<A,B>>, Cloneable { ... }

This is a generic class with two type arguments A and B, both of which have two bounds.

LINK TO THIS TypeParameters.FAQ101

REFERENCES What is the difference between a wildcard bound and a type parameter bound?
Which types are permitted as type parameter bounds?
Can I use different instantiations of a same generic type as bounds of a type parameteer?

Which types are permitted as type parameter bounds?

All classes, interfaces and enum types including parameterized types, but no primitive types and no array
types.

All classes, interfaces, and enum types can be used as type parameter bound, including nested and inner types.
Neither primitive types nor array types be used as type parameter bound.

Examples (of type parameter bounds):

class X0 <T extends int> { ... } // error
class X1 <T extends Object[]> { ... } // error
class X2 <T extends Number> { ... }
class X3 <T extends String> { ... }
class X4 <T extends Runnable> { ... }
class X5 <T extends Thread.State> { ... }
class X6 <T extends List> { ... }
class X7 <T extends List<String>> { ... }
class X8 <T extends List<? extends Number>> { ... }
class X9 <T extends Comparable<? super Number>> { ... }
class X10<T extends Map.Entry<?,?>> { ... }

The code sample shows that primitive types such as int and array types such as Object[] are not permitted as
type parameter bound.

Class types, such as Number or String, and interface types, such as Runnable, are permitted as type parameter
bound.

Enum types, such as Thread.State are also permitted as type parameter bound. Thread.State is an example
of a nested type used as type parameter bound. Non-static inner types are also permitted.

Raw types are permitted as type parameter bound; List is an example.

Parameterized types are permitted as type parameter bound, including concrete parameterized types such as
List<String>, bounded wildcard parameterized types such as List<? extends Number> and Comparable<?
super Long>, and unbounded wildcard parameterized types such as Map.Entry<?,?>. A bound that is a
wildcard parameterized type allows as type argument all types that belong to the type family that the wildcard
denotes. The wildcard parameterized type bound gives only restricted access to fields and methods; the
restrictions depend on the kind of wildcard.

Example (of wildcard parameterized type as type parameter bound):

class X<T extends List<? extends Number>> {
 public void someMethod(T t) {
 t.add(new Long(0L)); // error
 Number n = t.remove(0);
 }
}
class Test {
 public static void main(String[] args) {
 X<ArrayList<Long>> x1 = new X<ArrayList<Long>>();
 X<ArrayList<String>> x2 = new X<ArrayList<String>>(); // error
 }
}

Reference variables of type T (the type parameter) are treated like reference variables of a wildcard type (the
type parameter bound). In our example the consequence is that the compiler rejects invocation of methods that
take an argument of the "unknown" type that the type parameter stands for, such as List.add, because the
bound is a wildcard parameterized type with an upper bound.
At the same time the bound List<? extends Number> determines the types that can be used as type
arguments. The compiler accepts all type arguments that belong to the type family List<? extends Number>,
that is, all subtypes of List with a type argument that is a subtype of Number.

Note, that even types that do not have subtypes, such as final classes and enum types, can be used as upper
bound. In this case there is only one type that can be used as type argument, namely the type parameter bound
itself. Basically, the parameterization is pointless then.

Example (of nonsensical parameterization):

class Box<T extends String> {
 private T theObject;
 public Box(T t) { theObject = t; }
 ...
}
class Test {
 public static void main(String[] args) {
 Box<String> box1 = Box<String>("Jack");
 Box<Long> box2 = Box<Long>(100L); // error
 }
}

The compiler rejects all type arguments except String as "not being within bounds". The type parameter T is
not needed and the Box class would better be defined as a non-parameterized class.

LINK TO THIS TypeParameters.FAQ102

REFERENCES What is a type parameter bound?
Can I use a type parameter as a type parameter bound?
Can I use different instantiations of a same generic type as bounds of a type parameter?
Can I use a type parameter as part of its own bounds or in the declaration of other type parameters?
How do unbounded wildcard instantiations of a generic type relate to other instantiations of the same generic type?

How do wildcard instantiations with an upper bound relate to other instantiations of the same generic type?
How do wildcard instantiations with a lower bound relate to other instantiations of the same generic type?
Which methods and fields are accessible/inaccessible through a reference variable of a wildcard parameterized type?

Can I use a type parameter as a type parameter bound?

Yes.

A type parameter can be used as the bound of another type parameter.

Example (of a type parameter used as a type parameter bound):

class Triple<T> {
 private T fst, snd, trd;
 public <U extends T, V extends T, W extends T> Triple(U arg1, V arg2, W arg3) {

 fst = arg1;
 snd = arg2;
 trd = arg3;
 }
}

In this example the type parameter T of the parameterized class is used as bound of the type parameters U, V
and W of a parameterized instance method of that class.

Further opportunities for using type parameters as bounds of other type parameters include situations where a
nested type is defined inside a generic type or a local class is defined inside a generic method. It is even
permitted to use a type parameter as bound of another type parameter in the same type parameter section.

LINK TO THIS TypeParameters.FAQ102A

REFERENCES Can I use a type parameter as part of its own bounds or in the declaration of other type parameters?
Which types are permitted as type parameter bounds?
Where is a type parameter visible (or invisible)?
Can I use different instantiations of a same generic type as bounds of a type parameteer?
What is the difference between a wildcard bound and a type parameter bound?

Can I use different instantiations of a same generic type as bounds of a type parameter?

No, at most one instantiation of the same generic type can appear in the list of bounds of a type parameter.

Example (of illegal use of two instantiations of the same generic type as bounds of a type parameter):

class ObjectStore<T extends Comparable<T> & Comparable<String>> { // error
 private Set<T> theObjects = new TreeSet<T>();
 ...
 public boolean equals(ObjectStore<String> other) {
 if (theObjects.size() != other.size()) return false;
 Iterator<T> iterThis = theObjects.iterator();
 Iterator<String> iterOther = other.theObjects.iterator();
 while (iterThis.hasNext() && iterOther.hasNext()) {
 T t = iterThis.next();
 String string = iterOther.next();
 if (t.compareTo(string) != 0) return false;
 }
 return true;

 }
}

error: java.lang.Comparable cannot be inherited with different arguments: <T> and
<java.lang.String>
 class ObjectStore<T extends Comparable<T> & Comparable<String>> {
 ^

In the example the type parameter T is required to be Comparable<T>, that is, comparable to its own type. This
is needed for storing objects of type T in a TreeSet<T>. At the same time the type parameter T is required to be
Comparable<String>, because we want to invoke the type parameter's compareTo(String) method.
Remember, type parameter bounds are needed to give the compiler access to the type parameters non-static
methods. In this (admittedly contrived) example, we need to specify two instantiations of the Comparable
interface as bound of the type parameter, but the compiler rejects it.

The reason for this restriction is that there is no type that is a subtype of two different instantiations of the
Comparable interface and could serve as a type argument. It is prohibited that a type implements or extends
two different instantiations of the same interface. This is because the bridge method generation process cannot
handle this situation. Details are discussed in a separate FAQ entry (click here). If no class can ever
implement both instantiations of Comparable, there is no point to a bounds list that requires it. The class in our
example would not be instantiable because no type can ever be within bounds, except perhaps class String.

In practice, you will need to work around this restriction. Sadly, there might be situations in which there is no
workaround at all.

LINK TO THIS TypeParameters.FAQ103

REFERENCES Can a class implement different instantiations of the same generic interface?
What is type erasure?
What is a bridge method?
How does type erasure work when a type parameter has several bounds?
How can work around the restriction that a type parameter cannot have different instantiations of a same generic type as its bounds?

How can I work around the restriction that a type parameter cannot have different instantiations of
a same generic type as its bounds?

Usually there is no satisfactory workaround.

Let us use the example from the previous question for our search of a workaround.

Example (of illegal use of two instantiations of the same generic type as bounds of a type parameter):

class ObjectStore<T extends Comparable<T> & Comparable<String>> { // error
 private Set<T> theObjects = new TreeSet<T>();
 ...
 public boolean equals(ObjectStore<String> other) {
 if (theObjects.size() != other.size()) return false;
 Iterator<T> iterThis = theObjects.iterator();
 Iterator<String> iterOther = other.theObjects.iterator();
 while (iterThis.hasNext() && iterOther.hasNext()) {
 T t = iterThis.next();
 String string = iterOther.next();
 if (t.compareTo(string) != 0) return false;
 }
 return true;
 }

}

In the example the type parameter T is required to be Comparable<T>, because objects of type T are stored in a
TreeSet<T>. At the same time the type parameter T is required to be Comparable<String>, because we invoke
the type parameter's compareTo(String) method. The compiler rejects the attempt of specifying two
instantiations of the Comparable interface as bound of the type parameter.

One workaround for the example above could be the following: we could drop the requirement that the
parameter T must be Comparable<T>, because the corresponding compareTo(T) method is not invoked in the
implementation of the generic class itself, but in the operations of the Treeset<T>. By dropping the
requirement we would risk that a type argument is supplied that is not Comparable<T> and will cause
ClassCastExceptions when operations of the TreeSet<T> are invoked. Clearly not a desirable solution, but
perhaps a viable one for this particular example.

However, this might not be a solution if the class uses the type parameter in a slightly different way. For
instance, if both compareTo methods were called in the implementation of the generic class, then we could not
drop any of the bounds.

Example (another class with illegal use of two instantiations of the same generic type as bounds of a type
parameter):

class SomeClass<T extends Comparable<T> & Comparable<String>> { // error
 ...
 private void method(T t1, T t2) {
 ... t1.compareTo(t2) ...
 ... t1.compareTo("string") ...
 }
}

If the methods of the bounds are invoked in the class implementation, then dropping one of the conflicting
bounds does not solve the problem. One could consider use of an additional interface, such as a
CombinedComparable interface that combines the two required interfaces into one interface.

Example (conceivable work-around; does not work):

interface CombinedComparable<T> {
 int compareTo(T other);
 int compareTo(String other);
}
class SomeClass<T extends CombinedComparable<T> {
 ...
 private void m(T t1, T t2) {
 ... t1.compareTo(t2) ...
 ... t1.compareTo("string") ...
 }
 public boolean equals(SomeClass<String> other) { // error
 ...
 }
 }

However, this is not really a viable solution, because it excludes class String as a type argument. String is a
class that is comparable to itself and to String, but it is does not implement a CombinedComparable interface.
Hence type String is not within bounds. Another conceivable alternative is definition of one new interface per
instantiation needed, such as a parameterized SelfComparable and a non-parameterized StringComparable
interface. Again, this excludes class String as a potential type argument. If it acceptable that class String is
excluded as a potential type argument then the definition of additional interfaces might be a viable
workaround.

But there remain some situations, in which additional interfaces do not help. For instance, if the type parameter

is used as type argument of another parameterized method, then it must itself be within the bounds of that other
type parameter.

Example (another class with illegal use of two instantiations of the same generic type as bounds of a type
parameter):

class AnUnrelatedClass {
 public static <T extends Comparable<String>> void f(T t) { ... }
}
class AnotherUnrelatedClass {
 public static <T extends Comparable<T>> void g(T t) { ... }
}
class SomeClass<T extends Comparable<T> & Comparable<String>> { // error
 ...
 private void h(T t) {
 AnUnrelatedClass.f(t);
 AnotherUnrelatedClass.g(t);
 }
}

No solution sketched out above would address this situation appropriately. If we required that the type
parameter be CombinedComparable, it would not be within the bounds of at least one of the two invoked
methods. Note, that the CombinedComparable interface can be a subinterface of only one of the two
instantiations of Comparable, but not both.

Example (conceivable work-around; does not work):

interface CombinedComparable<T> extends Comparable<String> {
 int compareTo(T other);
}
class ObjectStore<T extends CombinedComparable<T> {
 ...
 private void h(T t) {
 AnUnrelatedClass.f(t);
 AnotherUnrelatedClass.g(t); // error
 }
}

The same happens when we require that the type parameter be SelfComparable and StringComparable. Even
if both were subinterfaces of the respective instantiation of Comparable, there cannot be a class that implements
both, because that class would indirectly implement the two instantiations of Comparable.

Ultimately the realization is that, depending on the circumstances, there might not be a work around at all.

LINK TO THIS TypeParameters.FAQ104

REFERENCES Can I use different instantiations of a same generic type as bounds of a type parameter?
Can a class implement different instantiations of the same parameterized interface?

Does a bound that is a class type give access to all its public members?

Yes, except any constructors.

A bound that is a class gives access to all its public members, that is, public fields, methods, and nested type.
Only constructors are not made accessible, because there is no guarantee that a subclass of the bound has the
same constructors as the bound.

Example (of a class used as bound of a type parameter):

public class SuperClass {

 // static members
 public enum EnumType {THIS, THAT}
 public static Object staticField;
 public static void staticMethod() { ... }

 // non-static members
 public class InnerClass { ... }
 public Object nonStaticField;
 public void nonStaticMethod() { ... }

 // constructors
 public SuperClass() { ... }

 // private members
 private Object privateField;

 ...
}

public final class SomeClass<T extends SuperClass> {
 private T object;
 public SomeClass(T t) { object = t; }

 public String toString() {
 return
 "static nested type : "+T.EnumType.class+"\n"
 +"static field : "+T.staticField+"\n"
 +"static method : "+T.staticMethod()+"\n"
 +"non-static nested type: "+T.InnerClass.class+"\n"
 +"non-static field : "+object.nonStaticField+"\n"
 +"non-static method : "+object.nonStaticMethod()+"\n"
 +"constructor : "+(new T())+"\n" // error
 +"private member : "+object.privateField+"\n" // error
 ;
 }
}

The bound SuperClass gives access to its nested types, static fields and methods and non-static fields and
methods. Only the constructor is not accessible. This is because constructors are not inherited. Every subclass
defines its own constructors and need not support its superclass's constructors. Hence there is no guarantee that
a subclass of SuperClass will have the same constructor as its superclass.

Although a superclass bound gives access to types, fields and methods of the type parameter, only the non-
static methods are dynamically dispatched. In the unlikely case that a subclass redefines types, fields and static
methods of its superclass, these redefinitions would not be accessible through the superclass bound.

Example (of a subclass of the bound used for instantiation):

public final class SubClass extends SuperClass {

 // static members
 public enum Type {FIX, FOXI}
 public static Object staticField;
 public static Object staticMethod() { ... }

 // non-static members
 public class Inner { ... }
 public Object nonStaticField;

 public Object nonStaticMethod() { ... }

 // constructors
 public SubClass(Object o) { ... }
 public SubClass(String s) { ... }

 ...
}

SomeClass<SubClass> ref = new SomeClass<SubClass>(new SubClass("xxx"));
System.out.println(ref);

prints:
static nested type : SuperClass.EnumType
static field : SuperClass.staticField
static method : SuperClass.staticMethod => SuperClass.staticField
non-static nested type: SuperClass.InnerClass
non-static field : SuperClass.nonStaticField
non-static method : SubClass.nonStaticMethod => SubClass.nonStaticField

Calling the nonStaticMethod results in invocation of the subclass's overriding version of the
nonStaticMethod. In contrast, the subclass's redefinitions of types, fields and static methods are not accessible
through the bounded parameter. This is nothing unusual. First, it is poor programming style to redefine in a
subclass any of the superclass's nested types, fields and static methods. Only non-static methods are
overridden. Second, the kind of hiding that we observe in the example above also happens when a subclass
object is used through a superclass reference variable.

LINK TO THIS TypeParameters.FAQ105

REFERENCES

How do I decrypt "Enum<E extends Enum<E>>"?

As a type that can only be instantiation for its subtypes, and those subtypes will inherit some useful methods,
some of which take subtype arguments (or otherwise depend on the subtype).

The context in which "Enum<E extends Enum<E>>" appears is the declaration of the Enum class in package
java.lang:

public abstract class Enum<E extends Enum<E>> {
 ...
}

The type Enum is the common base class of all enumeration types. In Java an enumeration type such as Color
is translated into a class Color that extends Enum<Color>. The purpose of the superclass Enum is to provide
functionality that is common to all enumeration types.

Here is a sketch of class Enum:

public abstract class Enum<E extends Enum<E>> implements Comparable<E>,
Serializable {
 private final String name;
 public final String name() { ... }

 private final int ordinal;
 public final int ordinal() { ... }

 protected Enum(String name, int ordinal) { ... }

 public String toString() { ... }
 public final boolean equals(Object other) { ... }
 public final int hashCode() { ... }
 protected final Object clone() throws CloneNotSupportedException { ... }
 public final int compareTo(E o) { ... }

 public final Class<E> getDeclaringClass() { ... }
 public static <T extends Enum<T>> T valueOf(Class<T> enumType, String name) {
... }
}

The surprising feature in the declaration "Enum<E extends Enum<E>>" is the fact that the newly defined class
Enum and its newly defined type parameter Eappear in the bound of that same type parameter. It means that the
Enum type must be instantiated for one of its subtypes. In order to understand why this makes sense, consider
that every enum type is translated into a subtype of Enum.

Here is the contrived enum type Color:

enum Color {RED, BLUE, GREEN}

The compiler translates it into the following class:

public final class Color extends Enum<Color> {
 public static final Color[] values() { return (Color[])$VALUES.clone(); }
 public static Color valueOf(String name) { ... }

 private Color(String s, int i) { super(s, i); }

 public static final Color RED;
 public static final Color BLUE;
 public static final Color GREEN;

 private static final Color $VALUES[];

 static {
 RED = new Color("RED", 0);
 BLUE = new Color("BLUE", 1);
 GREEN = new Color("GREEN", 2);
 $VALUES = (new Color[] { RED, BLUE, GREEN });
 }
}

The inheritance has the effect that the Color type inherits all the methods implemented in Enum<Color>.
Among them is the compareTo method. The Color.compareTo method should probably take a Color as an
argument. In order to make this happen class Enum is generic and the Enum.compareTo method takes Enum's
type parameter E as an argument. As a result, type Color derived from Enum<Color> inherits a compareTo
method that takes a Color as and argument, exactly as it should.

If we dissect the declaration "Enum<E extends Enum<E>>" we can see that this pattern has several aspects.

First, there is the fact that the type parameter bound is the type itself: "Enum<E extends Enum<E>>". It makes
sure that only subtypes of type Enum are permitted as type arguments. (Theoretically, type Enum could be
instantiated on itself, like in Enum<Enum>, but this is certainly not intended and it is hard to imagine a situation
in which such an instantiation would be useful.)

Second, there is the fact that the type parameter bound is the parameterized type Enum<E>, which uses the type
parameter E as the type argument of the bound. This declaration makes sure that the inheritance relationship
between a subtype and an instantiation of Enum is of the form "X extends Enum<X>". A subtype such as "X
extends Enum<Y>" cannot be declared because the type argument Y would not be within bounds; only subtypes

of Enum<X> are within bounds.

Third, there is the fact that Enum is generic in the first place. It means that some of the methods of class
Enumtake an argument or return a value of an unknown type (or otherwise depend on an unknown type). As we
already know, this unknown type will later be a subtype X of Enum<X>. Hence, in the parameterized type
Enum<X>, these methods involve the subtype X, and they are inherited into the subtype X. The compareTo
method is an example of such a method; it is inherited from the superclass into each subclass and has a
subclass specific signature in each case.

To sum it up, the declaration "Enum<E extends Enum<E>>" can be decyphered as: Enum is a generic type that
can only be instantiated for its subtypes, and those subtypes will inherit some useful methods, some of which
take subtype specific arguments (or otherwise depend on the subtype).

LINK TO THIS TypeParameters.FAQ106

REFERENCES How is a generic type defined?
What is a bounded type parameter?
Where is a type parameter visible (or invisible)?

Why is there no lower bound for type parameters?

Because it does not make sense for type parameters of classes; it would occasionally be useful in conjunction
with method declarations, though.

Type parameters can have several upper bounds, but no lower bound. This is mainly because lower bound type
parameters of classes would be confusing and not particularly helpful. In conjunctions with method
declarations, type parameters with a lower bound would occasionally be useful. In the following, we first
discuss lower bound type parameters of classes and subsequently lower bound type parameters of methods.

Lower Bound Type Parameters of Classes

Type parameters can have several bounds, like in class Box<T extends Number> {...}. But a type
parameter can have no lower bound, that is, a construct such as class Box<T super Number> {...} is not
permitted. Why not? The answer is: it is pointless because it would not buy you anything, were it allowed. Let
us see why lower bound type parameters of classes are confusing by exploring what a upper bound on a type
parameter means.

The upper bound on a type parameter has three effects:

1. Restricted Instantiation. The upper bound restricts the set of types that can be used for instantiation of
the generic type. If we declare a class Box<T extends Number> {...} then the compiler would
ensure that only subtypes of Number can be used as type argument. That is, a Box<Number> or a
Box<Long> is permitted, but a Box<Object> or Box<String> would be rejected.

Example (of restricted instantiation due to an upper bound on a type parameter):

class Box<T extends Number> {
 private T value;
 public Box(T t) { value = t; }

 ...
}
class Test {
 public static void main(String[] args) {
 Box<Long> boxOfLong = new Box<Long>(0L); // fine
 Box<String> boxOfString = new Box<String>(""); // error: String is not
within bounds
 }
}

2. Access To Non-Static Members. The upper bound gives access to all public non-static methods and
fields of the upper bound. In the implementation of our class Box<T extends Number> {...} we can
invoke all public non-static methods defined in class Number, such as intValue() for instance. Without
the upper bound the compiler would reject any such invocation.Example (of access to non-static members
due to an upper bound on a type parameter):

class Box<T extends Number> {
 private T value;
 public Box(T t) { value = t; }
 public int increment() { return value.intValue()+1; } // <= would be an error
without the Number bound
 ...
}

1. Type Erasure. The leftmost upper bound is used for type erasure and replaces the type parameter in the
byte code. In our class Box<T extends Number> {...} all occurrences of T would be replaced by the
upper bound Number. For instance, if class Box has a private field of type T and a method void set(T
content) for setting this private field, then the field would be of type Number after type erasure and the
method would be translated to a method void set(Number content).

Example (of use of upper bound on a type parameter in type erasure - before type erasure):

class Box<T extends Number> {
 private T value;
 public Box(T t) { value = t; }
 ...
}

Example (of use of upper bound on a type parameter in type erasure - after type erasure):

class Box {
 private Number value;
 public Box(Number t) { value = t; }
 ...
}

In addition, the leftmost upper bound appears in further locations, such as automatically inserted casts
and bridge methods.

If lower bounds were permitted on type parameters, which side effects would or should they have? If a
construct such as class Box<T super Number> {...} were permitted, what would it mean? What would the
3 side effects of an upper type parameter bound - restricted instantiation, access to non-static member, type
erasure - mean for a lower bound?

Restricted Instantiations. The compiler could restrict the set of types that can be used for instantiation of the
generic type with a lower bound type parameter. For instance, the compiler could permit instantiations such as
Box<Number> and Box<Object> from a Box<T super Number> and reject instantiations such as Box<Long> or
Box<Short>. This would be an effect in line with the restrictive side-effect described for upper type parameter

bounds.

Access To Non-Static Members. A lower type parameter bound does not give access to any particular methods
beyond those inherited from class Object. In the example of Box<T super Number> the supertypes of Number
have nothing in common, except that they are reference types and therefore subtypes of Object. The compiler
cannot assume that the field of type T is of type Number or a subtype thereof. Instead, the field of type T can be
of any supertype of Number, such as Serializable or Object. The invocation of a method such as
intValue() is no longer type-safe and the compiler would have to reject it. As a consequence, the lower type
parameter bound would not give access to an non-static members beyond those defined in class Object and
thus has the same effect as "no bound".

Type Erasure. Following this line of logic, it does not make sense to replace the occurences of the type
parameter by its leftmost lower bound. Declaring a method like the constructor Box(T t) as a constructor
Box(Number t) does not make sense, considering that T is replaces by a supertype of Number. An Object
might be rightly passed to the constructor in an instantiation Box<Object> and the constructor would reject it.
This would be dead wrong. So, type erasure would replace all occurences of the type variableT by type
Object, and not by its lower bound. Again, the lower bound would have the same effect as "no bound".

Do you want to figure out what it would mean if both lower _and_ upper bounds were permitted? Personally,
I do not even want to think about it and would prefer to file it under "not manageable", if you permit.

The bottom line is: all that a "super" bound would buy you is the restriction that only supertypes of Number
can be used as type arguments. And even that is frequently misunderstood. It would NOT mean, that class
Box<T super Number> {...} contains only instances of supertypes of Number. Quite the converse - as the
example below demonstrates!

Example (of use of upper bound on a type parameter in type erasure - before type erasure):

class Box<T super Number> {
 private T value;
 public Box(T t) { value = t; }
 ...
}

Example (of use of upper bound on a type parameter in type erasure - after type erasure):

class Box {
 private Object value;
 public Box(Object t) { value = t; }
 ...
}

A class Box<T super Number> {...} would be translated by type erasure to a Box containing an Object
field and it's constructor would be translated to Box(Object t). That's fundamentally different from a class
Box<T extends Number> {...}, which would be translated to a Box containing a Number field and it's
constructor would be translated to Box(Number t). Consequently, a Box<Number> instantiated from a class
Box<T extends Number> {...} would be different from a Box<Number> instantiation from a class Box<T
super Number> {...}, which is likely to cause confusion. For this reason lower bounds do not make sense on
type parameters of classes.

Lower Bound Type Parameters of Methods

In conjunction with methods and their argument types, a type parameter with a lower bound can occasionally
be useful.

Example (of a method that would profit from a type parameter with a lower bound):

class Pair<X,Y> {
 private X first;

 private Y second;
 ...
 public <A super X,B super Y> B addToMap(Map<A,B> map) { // error: type
parameter cannot have lower bound
 return map.put(first, second);
 }
}
class Test {
 public static void main(String[] args) {
 Pair<String,Long> pair = new Pair<>("ABC",42L);
 Map<CharSequence, Number> map = HashMap<CharSequence, Number>();
 Number number = pair.addToMap(map);
 }
}

The addToMap() method adds the content of the pair to a map. Any map that can hold supertypes of X and Y
would do. The map's put() method returns the value found in the map for the given key, if there already is a
key-value entry for the key in the map. The return value of the map's put() method shall be returned from the
addToMap() method. Under these circumstances one would like to declare the method as shown above: The
map is parameterized with supertypes of the pair's type parameters and the addToMap() method'S return type is
the map's value type.

Since the compiler does not permit lower bounds on type parameters we need a work-around.

One work-around that comes to mind is use of a wildcard, because wildcards can have a lower bound. Here is
a work-around using a wildcard.

Example (of a work-around for the previous example using wildcards):

class Pair<X,Y> {
 private X first;
 private Y second;
 ...
 public Object addToMap(Map<? super X, ? super Y> map) {
 return map.put(first, second);
 }
}
class Test {
 public static void main(String[] args) {
 Pair<String,Long> pair = new Pair<>("ABC",42L);
 Map<CharSequence, Number> map = HashMap<CharSequence, Number>();
 Number number = (Number)pair.addToMap(map);
 }
}

It works, except that there is no way to declare the return type as desired. It would be the supertype of Y that
the compiler captures from the map type, but there is no syntax for specifying it. We must not declare the
return type a "? super Y", because "? super Y" is a wildcard and not a type and therefore not permitted as a
return type. We have no choice and must use Object instead as our method's return type. This rather
unspecific return type in turn forces callers of the addToMap() method into casting the return value down from
Object to its actual type. This is not exactly what we had in mind.

Another work-around is use of static methods. Here is a work-around with a static instead of a non-static
method.

Example (of a work-around for the previous example using a static method):

class Pair<X,Y> {

 private X first;
 private Y second;
 ...
 public static <A,B,X extends A,Y extends B> B addToMap(Pair<X,Y> pair,
Map<A,B> map) {
 return map.put(pair.first,pair.second);
 }
}
class Test {
 public static void main(String[] args) {
 Pair<String,Long> pair = new Pair<>("ABC",42L);
 Map<CharSequence, Number> map = HashMap<CharSequence, Number>();
 Number number = Pair.addToMap(pair,map);
 }
}

The generic addToMap() method has four type parameters: two placeholders X and Y for the pair's type and two
placeholders A and B for the map's type. A and B are supertypes of X and Y , because X and Y are declared with
A and B as their upper bounds. (Note, that the generic method's type parameters X and Y have nothing to do with
the Pair class's X and Y parameters. The names X and Y are reused for the generic method to make them easily
recognizably as the pair's type parameters.) Using four type parameters we can declare the precise return type
as desired: it is the same type as the value type of the map.

The bottom line is that the usefulness of lower bounds on type parameters is somewhat debatable. They would
be confusing and perhaps even misleading when used as type parameters of a generic class. On the other hand,
generic methods would occasionally profit from a type parameter with a lower bound. For methods, a work-
around for the lack of a lower bound type parameter can often be found. Such a work-around typically involves
a static generic method or a lower bound wildcard.

LINK TO THIS TypeParameters.FAQ107

REFERENCES What is a bounded type parameter?
Does a bound that is a class type give access to all its public members?
What is a bounded wildcard?
What is the difference between a wildcard bound and a type parameter bound?

Usage

Can I use a type parameter like a type?

No, a type parameter is not a type in the regular sense (different from a regular type such as a non-generic
class or interface).

Type parameters can be used for typing (like non-generic classes and interfaces)::

as argument and return types of methods
as type of a field or local reference variable
as type argument of other parameterized types
as target type in casts
as explicit type argument of parameterized methods

Type parameters can NOT be used for the following purposes (different from non-generic classes and

interfaces)::

for creation of objects
for creation of arrays
in exception handling
in static context
in instanceof expressions
as supertypes
in a class literal

LINK TO THIS TypeParameters.FAQ200

REFERENCES

Can I create an object whose type is a type parameter?

No, because the compiler does not know how to create objects of an unknown type.

Each object creation is accompied by a constructor call. When we try to create an object whose type is a type
parameter then we need an accessible constructor of the unknown type that the type parameter is a place holder
for. However, there is no way to make sure that the actual type arguments have the required constructors.

Example (illegal generic object creation):

public final class Pair<A,B> {
 public final A fst;
 public final B snd;

 public Pair() {
 this.fst = new A(); // error
 this.snd = new B(); // error
 }
 public Pair(A fst, B snd) {
 this.fst = fst;
 this.snd = snd;
 }
}

In the example above, we are trying to invoke the no-argument constructors of two unknown types represented
by the type parameters A and B. It is not known whether the actual type arguments will have an accessible no-
argument constructor.

In situations like this - when the compiler needs more knowledge about the unknown type in order to invoke a
method - we use type parameter bounds. However, the bounds only give access to methods of the type
parameter. Constructors cannot be made available through a type parameter bound.

If you need to create objects of unknown type, you can use reflection as a workaround. It requires that you
supply type information, typically in form of a Class object, and then use that type information to create
objects via reflection.

Example (workaround using reflection):

public final class Pair<A,B> {
 public final A fst;
 public final B snd;

 public Pair(Class<A> typeA, Class typeB) {

 this.fst = typeA.newInstance();
 this.snd = typeB.newInstance();
 }
 public Pair(A fst, B snd) {
 this.fst = fst;
 this.snd = snd;
 }
}

LINK TO THIS TypeParameters.FAQ201

REFERENCES Does a bound that is a class type give access to all its methods and fields?
How do I generically create objects and arrays?
How do I pass type information to a method so that it can be used at runtime?

Can I create an array whose component type is a type parameter?

No, because the compiler does not know how to create an object of an unknown component type.

We can declare array variables whose component type is a type parameter, but we cannot create the
corresponding array objects. The compiler does not know how to create an array of an unknown component
type.

Example (before type erasure):

class Sequence<T> {
 ...
 public T[] asArray() {
 T[] array = new T[size]; // error
 ...
 return array;
 }
}

Example (after a conceivable translation by type erasure):

class Sequence {
 ...
 public Object[] asArray() {
 Object[] array = new Object[size];
 ...
 return array;
 }
}

The type erasure of a type parameter is its leftmost bound, or type Object if no bound was specified. As a
result, the compiler would create an array of Objects in our example. This is not what we want. If we later
invoked the asArray method on a Sequence<String> a Object[] would be returned, which is incompatible to
the String[] that we expect.

Example (invocation of illegal method):

Sequence<String> seq = new Sequence<String>();
...
String[] arr = seq.asArray(); // compile-time error
String[] arr = (String[])seq.asArray(); // runtime failure: ClassCastException

Not even a cast would help because the cast is guaranteed to fail at runtime. The returned array is really an
array of Objects, not just a reference of type Object[] refering to a String[].

If you need to create arrays of an unknown component type, you can use reflection as a workaround. It
requires that you supply type information, typically in form of a Class object, and then use that type
information to create arrays via reflection.

Example (workaround using reflection):

class Sequence<T> {
 ...
 public T[] asArray(Class<T> type) {
 T[] array = (T[])Array.newInstance(type,size); // unchecked cast
 ...
 return array;
 }
}

By the way, the unchecked warning is harmless and can be ignored. It stems from the need to cast to the
unknown array type, because the newInstance method returns an Object[] as a result.

LINK TO THIS TypeParameters.FAQ202

REFERENCES What is type erasure?
How do I generically create objects and arrays?
How do I pass type information to a method so that it can be used at runtime?

Can I cast to the type that the type parameter stands for?

Yes, you can, but it is not type-safe and the compiler issues an "unchecked" warning.

Type parameters do not have a runtime type representation of their own. They are represented by their leftmost
bound, or type Object in case of an unbounded type parameter. A cast to a type parameter would therefore be a
cast to the bound or to type Object.

Example (of unchecked cast):

class Twins<T> {
 public T fst,snd;
 public Twins(T s, T t) { fst = s; snd = t; }
 ...
}
class Pair<S,T> {
 private S fst;
 private T snd;
 public Pair(S s, T t) { fst = s; snd = t; }
 ...
 public <U> Pair(Twins<U> twins) {
 fst = (S) twins.fst; // unchecked warning
 snd = (T) twins.snd; // unchecked warning
 }
}

The two casts to the type parameters are pointless because they will never fail; at runtime they are casts to type
Object. As a result any type of Pair can be constructed from any type of Twins. We could end up with a
Pair<Long,Long> that contains Strings instead of Longs. This would be a blatant violation of the type-safety

principle, because we would later trigger an unexpected ClassCastException, when we use this offensive
Pair<Long,Long> that contains Strings. In order to draw attention to the potentially unsafe casts the compiler
issues "unchecked" warnings.

LINK TO THIS TypeParameters.FAQ203

REFERENCES What does type-safety mean?
What is type erasure?
What is the type erasure of a type parameter?

Can I use a type parameter in exception handling?

It depends.

 Type parameters can appear in throws clauses, but not in catch clauses.

LINK TO THIS TypeParameters.FAQ204

REFERENCES Can I use a type parameter in a catch clause?
Can I use a type parameter in in a throws clause?
Can I throw an object whose type is a type parameter?

Can I derive from a type parameter?

No, because a type parameter does not have a runtime type representation of it own.

As part of the translation by type erasure, all type parameters are replaces by their leftmost bound, or Object if
the type parameter is unbounded. Consequently, there is no point to deriving from a type parameter, because
we would be deriving from its bound, not from the type that the type parameter stands for. In addition, the
actual type argument can be a final class or an enum type, from which we must not derive anyway.

Example (of illegal derivation from type parameter; before type erasure):

class Printable<T extends Collection<?>> extends T { // illegal
 public void printElements(PrintStream out) {
 for (Object o : this) out.println(o);
 }
 public void printElementsInReverseOrder(PrintStream out) {
 ...
 }
}
final class Test {
 public static void main(String[] args) {
 Printable<LinkedList<String>> list = new Printable<LinkedList<String>>();
 list.add(2,"abc");
 list.printElements(System.out);
 }
}

The idea of this generic subclass is that it adds print functionality to all collection classes by means of
derivation. A Printable<LinkedList<String>> would have all the functionality of LinkedList<String> plus
the print functionality. (This idiom is known in C++ as the curiously recurring template pattern). Since it is
illegal to derive from a type parameter, this kind of programming technique is not possible in Java. Consider
what the subclass would look like after type erasure.

Example (same example after a conceivable translation by type erasure):

class Printable extends Collection { // error: Collection is an interface, not
class
 public void printElements(PrintStream out) {
 for (Object o : this) out.println(o);
 }
 public void printElementsInReverseOrder(PrintStream out) {
 ...
 }
}

final class Test {
 public static void main(String[] args) {
 Printable list = new Printable();
 list.add(2,"abc"); // error: no such method can be found in
class Printable
 list.printElements(System.out);
 }
}

After type erasure the subclass Printable would not be a subclass of LinkedList, but a subclass of
Collection, which is not even possible, because Collection is an interface, not a class. Even if we used a
class as the bound of the type parameter, such as <T extends AbstractCollection>, none of the list-specific
methods would be available in the subclass, which entirely defeats the purpose of this programming pattern.

LINK TO THIS TypeParameters.FAQ205

REFERENCES What is type erasure?
Which types are permitted as type arguments?
The Curiously Recurring Template Pattern in C++ (James O. Coplien. A Curiously Recurring Template Pattern. In C++ Gems, 135-
144. Cambridge University Press, New York, 1996)

Why is there no class literal for a type parameter?

Because a type parameter does not have a runtime type representation of its own.

As part of the translation by type erasure, all type parameters are replaces by their leftmost bound, or Object if
the type parameter is unbounded. Consequently, there is no point to forming class literals such as T.class,
where T is a type parameter, because no such Class objects exist. Only the bound has a Class object that
represents its runtime type.

Example (before type erasure):

<T extends Collection> Class<?> someMethod(T arg){
 ...
 return T.class; // error
}

The compiler rejects the expression T.class as illegal, but even if it compiled it would not make sense. After
type erasure the method above could at best look like this:

Example (after type erasure):

Class someMethod(Collection arg){
 ...
 return Collection.class;
}

http://www.informit.com/articles/article.asp?p=31473&seqNum=3

The method would always return the bound's type representation, no matter which instantiation of the generic
method was invoked. This would clearly be misleading.

The point is that type parameters are non-reifiable, that is, they do not have a runtime type representation.
Consequently, there is no Class object for type parameters and no class literal for them.

LINK TO THIS TypeParameters.FAQ206

REFERENCES What is type erasure?
What is a reifiable type?

Scope

Where is a type parameter visible (or invisible)?

Everywhere in the definition of a generic type or method, except any static context of a type.

Generic Classes

The scope of a class's type parameter is the entire definition of the class, except any static members or static
initializers of the class. This means that the type parameters cannot be used in the declaration of static fields or
methods or in static nested types or static initializers.

Example (of illegal use of type parameter in static context of a generic class):

class SomeClass<T> {
 // static initializer, static field, static method
 static {
 SomeClass<T> test = new SomeClass<T>(); // error
 }
 private static T globalInfo; // error
 public static T getGlobalInfo() { // error
 return globalInfo;
 }
 // non-static initializer, non-static field, non-static method
 {
 SomeClass<T> test = new SomeClass<T>();
 }
 private T localInfo;
 public T getLocalInfo() {
 return localInfo;
 }
 // static nested types
 public static class Failure extends Exception {
 private final Tinfo; // error
 public Failure(T t) { info = t; } // error
 public T getInfo() { return info; } // error
 }
 private interface Copyable {
 T copy(); // error
 }
 private enum State {

 VALID, INVALID;
 private T info; // error
 public void setInfo(T t) { info = t; } // error
 public T getInfo() { return info; } // error
 }
 // non-static nested types
 public class Accessor {
 public T getInfo() { return localInfo; }
 }
}

The example illustrates that the type parameter cannot be used in the static context of a generic class. It also
shows that nested interfaces and enum types are considered static type members of the class. Only inner
classes, that is, non-static nested classes, can use the type parameter of the enclosing generic class.

Generic Interfaces

The scope of an interface's type parameter is the entire definition of the interface, except any fields or nested
types. This is because fields and nested types defined in an interface are implicitly static.

Example (of illegal use of type parameter in a generic interface):

interface SomeInterface<T> {
 // field
 SomeClass<T> value = new SomeClass<T>(); // error
 // nested type
 class Accessor {
 public T getInfo() { // error
 return value.getGlobalInfo();
 }
 }
 // methods
 T getValue();
}

The example shows that fields of an interface are implicitly static, so that the type parameter cannot be used
anywhere in the declaration of a field of a generic interface. Similarly, the nested class is considered a static
nested class, not an inner class, and for this reason use of the type parameter anywhere in the nested class is
illegal.

Generic Methods

The scope of a method's or constructor's type parameter is the entire definition of the method; there is no
exception, because a method has no static parts.

Example (of use of type parameter in a generic method):

private interface Copyable<T> {
 T copy();
}
// non-static method
<T extends Copyable<T>> void nonStaticMethod(T t) {
 final T copy = t.copy();

 class Task implements Runnable {
 public void run() {
 T tmp = copy;
 System.out.println(tmp);

 }
 }
 (new Task()).run();
}
// static method
static <T extends Copyable<T>> void staticMethod(T t) {
 final T copy = t.copy();

 class Task implements Runnable {
 public void run() {
 T tmp = copy;
 System.out.println(tmp);
 }
 }
 (new Task()).run();
}

The example illustrates that the type parameter can be used any place in the definition of a generic method.
The type parameter can appear in the return and argument type. It can appear in the method body and also in
local (or anonymous) classes defined inside the method. Note, that it does not matter whether the generic
method itself is static or non-static. Methods, different from types, do not have any "static context"; there is no
such thing as a static local variable or static local class.

LINK TO THIS TypeParameters.FAQ301

REFERENCES Why can't I use a type parameter in any static context of the generic class?
Can I use a type parameter as part of its own bounds or in the declaration of other type parameters?

Can I use a type parameter as part of its own bounds?

Yes, the scope of a type parameter includes the type parameter section itself.

The type parameters of a generic type or method are visible in the entire declaration of the type or method,
including the type parameter section itself. Therefore, type parameters can appear as parts of their own bounds,
or as bounds of other type parameters declared in the same section.

Example (of use of a type parameter in the type parameter section itself):

public final class Wrapper<T extends Comparable<T>> implements
Comparable<Wrapper<T>> {
 private final T theObject;
 public Wrapper(T t) { theObject = t; }
 public T getWrapper() { return theObject; }
 public int compareTo(Wrapper<T> other) {
 return theObject.compareTo(other.theObject);
 }
}

In the example above, the type parameter T is used as type argument of its own bound Comparable<T>.

Example (of use of a type parameter in the type parameter section itself):

<S,T extends S> T create(S arg) { ... }

In the example above, the first type parameter S is used as bound of the second type parameter T.

Forward references to type parameters are not permitted. The type parameter cannot be used in the entire type

parameter section, but only after its point of declaration.

Example (of an illegal forward reference to a type parameter):

<S extends T,T extends Comparable<S>> T create(S arg) { ... } // error

In the example above, the type parameter T is used in the type parameter section before it has been defined in
the same type parameter section. This kind of forward reference is illegal.

Forward references to types, not type parameters, are permitted, though.

Example (of an forward reference to a type):

interface Edge<N extends Node<? extends Edge<N>>> {
 N getBeginNode();
 void setBeginNode(N n);
 N getEndNode();
 void setEndNode(N n);
}
interface Node<E extends Edge<? extends Node<E>>> {
 E getOutEdge();
 void setOutEdge(E e);
 E getInEdge();
 void setInEdge(E e);
}

In the example above, the type Node is used (in the type parameter section of type Edge) before it has been
defined (probably in a different source file). This kind of forward reference this permitted, which is not
surprising. It is the usual way of defining and using types in Java.

LINK TO THIS TypeParameters.FAQ302

REFERENCES Where is a type parameter visible (or invisible)?
Can I use the type parameter of an outer type as part of the bounds of the type parameter of an inner type or a method?

Can I use the type parameter of an outer type as part of the bounds of the type parameter of an
inner type or a method?

Yes, the type parameter of an enclosing generic type or method can be used in the type parameter section of
an inner generic type or method.

The type parameters of a generic type or method can appear as parts of the bounds of the type parameters of
any generic type or methods in that scope.

Example (of use of type parameter of enclosing class in the type parameter section of a method):

public final class Wrapper<T> {
 private final T theObject;
 public Wrapper(T t) { theObject = t; }
 public <U extends T> Wrapper(Wrapper<U> w) { theObject = w.theObject;}
 public T getWrapper() { return theObject; }
}

In the example above, the type parameter T of the class Wrapper<T> is used as bound of the type paramter U of
the class's generic constructor.

In principle, you can use the type parameters of a generic class anywhere in the class scope, including the type

parameter sections of any generic methods or nested and inner types. For instance, the type parameters can
appear in the type parameter declaration of an inner class.

Example (of use of type parameter of enclosing class in the type parameter section of an inner class):

public final class Wrapper<T> {
 private final T theObject;
 public Wrapper(T t) { theObject = t; }
 public T getWrapper() { return theObject; }

 private final class WrapperComparator<W extends Wrapper<? extends
Comparable<T>>>
 implements Comparator<W> {
 public int compare(W lhs, W rhs) {
 return lhs.theObject.compareTo((T)(rhs.theObject));
 }
 }
 public <V extends Wrapper<? extends Comparable<T>>> Comparator<V> comparator() {

 return this.new WrapperComparator<V>();
 }
}

In this example, the type parameter T of the class Wrapper<T> is used as part of the bound of the type parameter
W of inner class WrapperComparator. In addition, it is also used as part of the bound of the type parameter V of
the comparator method.

Similar rules apply to generic interfaces. Even the type parameters of a generic method can be used in the
declaration of the type parameters of a local generic type.

Example (of use of type parameter of a method in the type parameter section of a local class):

class Test {
 private static <T> void method() {
 class Local<A extends T> { ... }
 ...
 }
}

However, generic local classes are rather rare in practice.

The type parameters of a generic type or method can appear anywhere in the declaration of the type parameters
of any generic type or methods in that scope. A type parameter T can appear

as the bound, as in <U extends T>, or
as part of the bounds, as in <U extends Comparable<T>>, or
as the bound of a wildcard, as in <U extends <Comparable<? super T>>, or
as part of the bound of a wildcard, as in <U extends Wrapper<? extends Comparable<T>>>.

There is only one restriction: if a type parameter is used as the bound of another type parameter then there must
not follow any further bounds.

Example (of illegal use of type parameter as a bound)::

class Wrapper<T> implements Cloneable {
 private final T theObject;
 ...
 public <U extends T & Cloneable> Wrapper<U> clone() { ... } // error
}

The type parameter T is followed by another bound, which is illegal.

LINK TO THIS TypeParameters.FAQ303

REFERENCES Where is a type parameter visible (or invisible)?
Can I use a type parameter as part of its own bounds?

Static Context

Is there one instances of a static field per instantiation of a generic type?

No, there is only one instance of a static field for all instantiations of a generic type.

If a generic type has a static field, how many instances of this static field exist?

Example (of a generic class with a static field):

class SomeClass<T> {
 public static int count;
 ...
}

The generic type can be instantiated for an arbitrary number of type arguments. Is there a different instance of
the static field for each instantiation of the generic type?

Example (of several instantiations and usage of the static field(s)):

SomeClass<String> ref1 = new SomeClass<String>();
SomeClass<Long> ref2 = new SomeClass<Long>();

ref1.count++;
ref2.count++;

The question is: are we accessing two different static fields in the code snippet above? The answer is: no, there
is only one instance of a static field per parameterized type, not several ones per instantiation of the generic
type.

The reason is that the compiler translates the definition of a generic type into one unique byte code
representation of that type. The different instantiations of the generic type are later mapped to this unique
representation by means of type erasure. The consequence is that there is only one static count field in our
example, despite of the fact that we can work with as many instantiations of the generic class as we like.

Example (showing the syntax for access to a static field of a generic type):

SomeClass<String> ref1 = new SomeClass<String>();
SomeClass<Long> ref2 = new SomeClass<Long>();

ref1.count++; // discouraged, but legal
ref2.count++; // discouraged, but legal
SomeClass.count++; // fine, recommended
SomeClass<String>.count++; // error
SomeClass<Long>.count++; // error

Although we can refer to the static field through reference variables of different type, namely of type
SomeClass<String> and SomeClass<Long> in the example, we access the same unique static count field. The

uniqueness of the static field is more clearly expressed when we refer to the static field using the enclosing
scope instead of object references. Saying SomeClass.count makes clear that there is only one static count
field that is independent of the type parameters of the enclosing class scope. Since the static field is
independent of the enclosing class's type parmeters it is illegal to use any instantiation of the generic enclosing
class as scope qualifier.

LINK TO THIS TypeParameters.FAQ401

REFERENCES What is type erasure?
How do I refer to static members of a parameterized type?
Where is a type parameter visible (or invisible)?
Why can't I use a type parameter in any static context of the generic class?

Why can't I use a type parameter in any static context of a generic class?

Because the static context is independent of the type parameters and exists only once per raw type, that is,
only once for all instantiations of a generic type.

Type parameters must not appear in any static context of a generic type, which means that type parameters
cannot be used in the declaration of static fields or methods or in static nested types or static initializers.

Example (of illegal use of a type parameter in static context):

public final class X<T> {
 private static Tfield; // error
 public static T getField() { return field; } // error
 public static void setField(T t) { field = t; } // error
}

The attempt of declaring a static field of the unknown type T is non-sensical and rightly rejected by the
compiler. There is only one instance of the static field for all instantiations of the generic class. Of which type
could that static field possibly be? The declaration of a static field, whose type is the type parameter, makes it
look like there were several instances of different types, namely one per instantiation, which is misleading and
confusing. For this reason, the use of type parameters for declaration of static fields is illegal.

As static methods often operate on static fields it makes sense to extend the rule to static methods: the type
parameter must not appear in a static method.

Interestingly, the same rule applies to static nested types defined in a generic class. There is no compelling
technical reason for this restriction. It's just that static nested types are considered independent of any
instantiations of the generic class, like the static fields and methods. For this reason, use of the type parameter
in a static nested type is illegal. (Note, static nested types include nested static classes, nested interfaces and
nested enum types.)

Example (of illegal use of a type parameter in static context):

class Wrapper<T> {
 private final T theObject;

 public Wrapper(T t) { theObject = t; }
 public T getWrappedItem() { return theObject; }

 public Immutable makeImmutable() {
 return new Immutable(theObject);
 }
 public Mutable makeMutable() {
 return new Mutable(theObject);
 }

 private static <A> A makeClone(A theObject) { ... }

 public static final class Immutable {
 private final T theObject; // error

 public Immutable(T arg) { // error
 theObject = makeClone(arg);
 }
 public T getWrappedItem() { // error
 return makeClone(theObject);
 }
 }
 public static class Mutable {
 ... similar ...
 }
}

In the example above the type parameter is used in the context of a nested class type. The compiler rejects the
use of the type parameter because the class type is a nested static class.

Workaround for nested static classes and interfaces:

In case of static nested classes and interfaces this is not a major calamity. As a workaround we can generify
the static class or interface itself.

Example (workaround - generify the nested static type):

class Wrapper<T> {
 private final T theObject;

 public Wrapper(T t) { theObject = t; }
 public T getWrapper() { return theObject; }

 public Immutable<T> makeImmutable() {
 return new Immutable<T>(theObject);
 }
 public Mutable<T> makeMutable() {
 return new Mutable<T>(theObject);
 }
 private static <A> A makeClone(A theObject) { ... }

 public static final class Immutable<A> { // is a generic class now
 private final A theObject;

 public Immutable(A arg) {
 theObject = makeClone(arg);
 }
 public A getWrappedItem() {
 return makeClone(theObject);
 }
 }
 public static class Mutable<A> {
 ... similar ...
 }
}

There is no such workaround for nested enum type because they cannot be generic.

Workaround for nested static classes:

If the nested static type is a class, an alternative workaround would be turning the static class into an non-static
inner class.

Example (workaround - use an inner class):

class Wrapper<T> {
 private final T theObject;

 public Wrapper(T t) { theObject = t; }
 public T getWrapper() { return theObject; }

 public Mutable makeMutable() {
 return this.new Mutable(theObject);
 }
 public Immutable makeImmutable() {
 return this.new Immutable(theObject);
 }
 private static <A> A makeClone(A theObject) { ... }

 public final class Immutable { // is no longer a static class
 private final T theObject;

 public Immutable(T arg) {
 theObject = makeClone(arg);
 }
 public T getWrappedItem() {
 return makeClone(theObject);
 }
 }
 public class Mutable
 ... similar ...
 }
}

This workaround comes with a certain amount of overhead because all inner classes have a hidden reference to
an instance of the outer type, which in this example they neither need nor take advantage of; the hidden
reference is just baggage. Often, inner classes are combined with interfaces in order to keep the inner class a
private implementation detail of the enclosing class. We can do the same here.

Example (the previous workaround refined):

class Wrapper<T> {
 private final T theObject;

 public Wrapper(T t) { theObject = t; }
 public T getWrapper() { return theObject; }

 public Mutable<T> makeMutable() {
 return this.new Mutable(theObject);
 }
 public Immutable<T> makeImmutable() {
 return this.new Immutable(theObject);
 }
 private static <A> A makeClone(A theObject) { ... }

 public interface Immutable<S> {
 S getWrappedItem();
 }
 public interface Mutable<S> {
 S getWrappedItem();
 void setWrappedItem(S arg);

 }
 private final class ImmutableImplementation implements Immutable<T> {

 private final T theObject;

 public ImmutableImplementation(T arg) {
 theObject = makeClone(arg);
 }
 public T getWrappedItem() {
 return makeClone(theObject);
 }
 }
 private class MutableImplementation implements Mutable<T> {
 ... similar ...
 }
}

As you can see, the nested public interfaces need to be generic whereas the inner private classes can use
enclosing class's the type parameter.

LINK TO THIS TypeParameters.FAQ402

REFERENCES Where is a type parameter visible (or invisible)?
Is there one instances of a static field per instantiation of a generic type?

CONTENT PREVIOUS NEXT INDEX

Type Arguments
© Copyright 2004-2022 by Angelika Langer. All Rights Reserved.

Fundamentals

What is a type argument?
Which types are permitted as type arguments?
Are primitive types permitted as type arguments?
Are wildcards permitted as type arguments?
Are type parameters permitted as type arguments?
Do type parameter bounds restrict the set of types that can be used as type arguments?
Do I have to specify a type argument when I want to use a generic type?
Do I have to specify a type argument when I want to invoke a generic method?

Wildcards

What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?
What do multi-level (or nested) wildcards mean?
If a wildcard appears repeatedly in a type argument section, does it stand for the same type?

Wildcard Bounds

What is a wildcard bound?
Which types are permitted as wildcard bounds?
What is the difference between a wildcard bound and a type parameter bound?

Type Arguments

Fundamentals

What is a type argument?

A reference type that is used for the instantiation of a generic type or for the instantiation of a generic method, or a
wildcard that is used for the instantiation of a generic type . An actual type argument replaces the formal type
parameter used in the declaration of the generic type or method.

Generic types and methods have formal type parameters, which are replaced by actual type arguments when the
parameterized type or method is instantiated.

Example (of a generic type):

class Box<T> {
 private T theObject;
 public Box(T arg) { theObject = arg; }
 ...

}

class Test {
 public static void main(String[] args) {
 Box<String> box = new Box<String>("Jack");
 }
}

In the example we see a generic class Box with one formal type parameter T. This formal type parameter is replaced
by actual type argument String, when the Box type is used in the test program.

There are few of rules for type arguments:

The actual type arguments of a generic type are
reference types,
wildcards, or
parameterized types (i.e. instantiations of other generic types).

Generic methods cannot be instantiated using wildcards as actual type arguments.
Type parameters are permitted as actual type arguments.
Primitive types are not permitted as type arguments.
Type arguments must be within bounds.

LINK TO THIS TypeArguments.FAQ001

REFERENCES What is a wildcard?
What is a type parameter?
Which types are permitted as type arguments?
Are primitive types permitted as type arguments?
Are wildcards permitted as type arguments?
Are type parameters permitted as type arguments?
Do type parameter bounds restrict the set of types that can be used as type arguments?

Which types are permitted as type arguments?

All references types including parameterized types, but no primitive types.

All reference types can be used a type arguments of a parameterized type or method. This includes classes, interfaces,
enum types, nested and inner types, and array types. Only primitive types cannot be used as type argument.

Example (of types as type arguments of a parameterized type):

List<int> l0; // error
List<String> l1;
List<Runnable> l2;
List<TimeUnit> l3;
List<Comparable> l4;
List<Thread.State> l5;
List<int[]> l6;
List<Object[]> l7;
List<Callable<String>> l8;
List<Comparable<? super Long>> l9;
List<Class<? extends Number>> l10;
List<Map.Entry<?,?>> l11;

The code sample shows that a primitive type such as int is not permitted as type argument.

Class types, such as String, and interface types, such as Runnable, are permitted as type arguments. Enum types,
such as TimeUnit (see java.util.concurrent.TimeUnit) are also permitted as type arguments.

Raw types are permitted as type arguments; Comparable is an example.

Thread.State is an example of a nested type; Thread.State is an enum type nested into the Thread class. Non-

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/TimeUnit.html

static inner types are also permitted.

An array type, such as int[] and Object[], is permitted as type arguments of a parameterized type or method.

Parameterized types are permitted as type arguments, including concrete parameterized types such as
Callable<String>, bounded wildcard parameterized types such as Comparable<? super Long> and Class<?
extends Number>, and unbounded wildcard parameterized types such as Map.Entry<?,?>.

The same types are permitted as explicit type arguments of a generic method.

Example (of types as type arguments of a generic method):

List<?> list;
list = Collections.<int>emptyList(); // error
list = Collections.<String>emptyList();
list = Collections.<Runnable>emptyList();
list = Collections.<TimeUnit>emptyList();
list = Collections.<Comparable>emptyList();
list = Collections.<Thread.State>emptyList();
list = Collections.<int[]>emptyList();
list = Collections.<Object[]>emptyList();
list = Collections.<Callable<String>>emptyList();
list = Collections.<Comparable<? super Long>>emptyList();
list = Collections.<Class<? extends Number>>emptyList();
list = Collections.<Map.Entry<?,?>>emptyList();

The code sample shows that primitive types such as int are not permitted as type argument of a generic method
either.

LINK TO THIS TypeArguments.FAQ002

REFERENCES What is a type argument?

Are primitive types permitted as type arguments?

No. Only reference types can be used as type arguments.

A parameterized type such as List<int> or Set<short> is illegal. Only reference types can be used for instantiation
of generic types and methods. Instead of List<int> we must declare a List<Integer>, using the corresponding
wrapper type as the type argument.

The lack of primitive type instantiations is not a major restriction in practice (except for performance reasons), because
autoboxing and auto-unboxing hides most of the nuisance of wrapping and unwrapping primitive values into their
corresponding wrapper types.

Example (of autoboxing):

int[] array = {1,2,3,4,5,6,7,8,9,10};
List<Integer> list = new LinkedList<Integer>();
for (int i : array)
 list.add(i); // autoboxing
for (int i=0;i<list.size();i++)
 array[i] = list.get(i); // auto-unboxing

Here we insert primitive type int values to the list of Integers, relying on autoboxing, which is the automatic
conversion from the primitve type to the corresponding wrapper type. Similarly, we extract primitive type int values
from the list, relying on auto-unboxing, which is the automatic conversion from the wrapper type to the
corresponding primitive type.

Note, that the lack of primitive type instantiations incurs a performance penalty. Autoboxing and -unboxing make the
use of wrapper type instantiations of generic types very convenient and concise in the source code. But the concise
notation hides the fact that behind the curtain the virtual machine creates and uses lots of wrapper objects, each of
which must be allocated and later garbage collected. The higher performance of direct use of primitive type values
cannot be achieved with generic types. Only a regular (i.e., non-generic) type can provide the optimal performance of
using primitive type values.

Example:

class Box<T> {
 private T theObject;
 public Box(T arg) { theObject = arg; }
 public T get() { return theObject; }
 ...
}
class BoxOfLong {
 private long theObject;
 public BoxOfLong(long arg) { theObject = arg; }
 public long get() { return theObject; }
 ...
}
class Test {
 public static void main(String[] args) {
 long result;

 Box<Long> box = new Box<Long>(0L); // autoboxing
 result = box.get(); // auto-unboxing

 Box<long> box = new Box<long>(0L); // error
 result = box.get();

 BoxOfLong box = new BoxOfLong(0L);
 result = box.get();
 }
}

The example illustrates that the instantiation of the Box type for type Long leads to the inevitable overhead of boxing
and unboxing. The instantiation on the primitive type long does not help, because it is illegal. Only a dedicated non-
generic BoxOfLong type eliminates the overhead by using the primitive type long.

LINK TO THIS TypeArguments.FAQ003

REFERENCES What is a type argument?
Which types are permitted as type arguments?

Are wildcards permitted as type arguments?

For instantiation of a generic type, yes. For instantiation of a generic method, no.

A wildcard is a syntactic construct that denotes a family of types.

All wildcards can be used as type arguments of a parameterized type. This includes the unbounded wildcard as well
as wildcards with an upper or lower bound.

Examples:

List<?> l0;
List<? extends Number> l1;
List<? super Long> l2;

Wildcards cannot be used as type arguments of a generic method.

Examples:

list = Collections.<?>emptyList(); //error
list = Collections.<? extends Number>emptyList(); //error
list = Collections.<? super Long>emptyList(); //error

LINK TO THIS TypeArguments.FAQ004

REFERENCES What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?

Are type parameters permitted as type arguments?

Yes.

Type parameters of a generic type or method can be used as arguments of parameterized types or methods.

Example (of instantiations of a generic type using a type parameter as type argument):

class someClass<T> {
 public List<T> someMethod() {
 List<T> list = Collections.<T>emptyList();
 ...
 return list;
 }
 public static <S> void anotherMethod(S arg) {
 List<S> list = Collections.<S>emptyList();
 ...
 }
}

The example above demonstrates how the type parameter T of the enclosing generic class and the type parameter S of
a generic method can be used as type arguments to both a parameterized type, namely List, and a generic method,
namely emptyList.

LINK TO THIS TypeArguments.FAQ005

REFERENCES What is a type argument?
What is a type parameter?
What is a parameterized (or generic) method?
What is a parameterized (or generic) type?

Do type parameter bounds restrict the set of types that can be used as type arguments?

Yes, type arguments must be within bounds.

When a formal type parameter is declared with one or several bounds, then the actual type argument must be a subtype
of all of the bounds specified for the respective formal type parameter.

Examples (using types from the packages java.util and java.lang):

class Wrapper<T extends Comparable<T>> implements Comparable<Wrapper<T>> {
 private final T theObject;
 public Wrapper(T t) { theObject = t; }
 public T getWrapper() { return theObject; }
 public int compareTo(Wrapper<T> other) { return theObject.compareTo(other.theObject); }

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Delayed.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/package-summary.html

}

Wrapper<String> wrapper1 = new Wrapper<String>("Oystein");
Wrapper<? extends Number> wrapper2 = new Wrapper<Long>(0L);
Wrapper<?> wrapper3 = new Wrapper<Date>(new Date());
Wrapper<Number> wrapper4 = new Wrapper<Number>(new Long(0L)); // error
Wrapper<int> wrapper5 = new Wrapper<int>(5); // error

Comparable<T> uses a type parameter as its type argument.
Comparable<Wrapper<T>> uses an instantiation of a parameterized type as type argument.
Wrapper<String> and Wrapper<Long> have concrete reference types as type arguments.
Wrapper<? extends Number> and Wrapper<?> use wildcards as type arguments.
Wrapper<Number> is illegal because Number is not a subtype of Comparable<Number> and is not within bounds.
Wrapper<int> is illegal because primitive types are not allowed as type arguments.

LINK TO THIS TypeArguments.FAQ006

REFERENCES What is a type parameter?
What is a bounded type parameter?

Do I have to specify a type argument when I want to use a generic type?

No; you can use the so-called raw type, which is the generic type without type arguments.

A generic type without any type arguments is called a raw type. Examples of raw types are List, Set, Comparable,
Iterable, etc. (examples are taken from the packages java.utiland java.lang).

Raw types are permitted for compatilibity between generic and non-generic (legacy) Java APIs. The use of raw types
in code written after the introduction of genericity into the Java programming language is strongly discouraged.

According to the Java Language Specification, it is possible that future versions of the Java programming language
will disallow the use of raw types.

LINK TO THIS TypeArguments.FAQ007

REFERENCES What is the raw type?
Can I use a raw type like any other type?
How does the raw type relate to instantiations of the corresponding generic type?
Where can I find a specification of the Java generics language features?

Do I have to specify a type argument when I want to invoke a generic method?

No; a generic method can be used without type arguments.

A generic method can be invoked like a regular method, that is, without specification of the type arguments. In such a
case the compiler will automatically infer the type arguments from the static types of the method arguments or the
context of the method invocation. This process is known as type argument inference.

LINK TO THIS TypeArguments.FAQ008

REFERENCES What is type argument inference?
What is explicit type argument specification?

Wildcards

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Delayed.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/package-summary.html

What is a wildcard?

A syntactic construct that denotes a family of types.

A wildcard describes a family of types. There are 3 different flavors of wildcards:

"?" - the unbounded wildcard. It stands for the family of all types.
"? extends Type " - a wildcard with an upper bound. It stands for the family of all types that are subtypes of
Type, type Type being included.
"? super Type " - a wildcard with a lower bound. It stands for the family of all types that are supertypes of
Type, type Type being included.

Wildcards are used to declare so-called wildcard parameterized types, where a wildcard is used as an argument for
instantiation of generic types. Wildcards are useful in situations where no or only partial knowledge about the type
argument of a parameterized type is required.

LINK TO THIS TypeArguments.FAQ101

REFERENCES What is a wildcard parameterized type?
If a wildcard appears repeatedly in a type argument section, does it stand for the same type?
What is a wildcard bound?
What is an unbounded wildcard?
What is a bounded wildcard?
Which super-subset relationships exist among wildcards?

What is an unbounded wildcard?

A wildcard without a bound.

The unbounded wildcard looks like "?" and stands for the family of all types.

The unbounded wildcard is used as argument for instantiations of generic types. The unbounded wildcard is useful in
situations where no knowledge about the type argument of a parameterized type is needed.

Example:

void printCollection(Collection<?> c){ // an unbounded wildcard parameterized type
 for (Object o : c){
 System.out.println(o);
 }
}

The printCollection method does not require any particular properties of the elements contained in the collection
that it prints. For this reason it declares its argument using an unbounded wildcard parameterized type, saying that any
type of collection regardless of the element type is welcome.

LINK TO THIS TypeArguments.FAQ102

REFERENCES What is a wildcard?
What is a wildcard parameterized type?
What is an unbounded wildcard parameterized type?
How do unbounded wildcard instantiations of a parameterized type relate to other instantiations of the same generic type?
Which super-subset relationships exist among wildcards?

What is a bounded wildcard?

A wildcard with either an upper or a lower bound.

A wildcard with an upper bound looks like "? extends Type " and stands for the family of all types that are subtypes
of Type, type Type being included. Type is called the upper bound.

A wildcard with a lower bound looks like "? super Type " and stands for the family of all types that are supertypes of
Type, type Type being included. Type is called the lower bound.

Bounded wildcards are used as arguments for instantiation of generic types. Bounded wildcards are useful in
situations where only partial knowledge about the type argument of a parameterized type is needed, but where
unbounded wildcards carry too little type information.

Example:

public class Collections {
 public static <T> void copy
 (List<? super T> dest, List<? extends T> src) { // bounded wildcard parameterized
types
 for (int i=0; i<src.size(); i++)
 dest.set(i,src.get(i));
 }
}

The copy method copies elements from a source list into a destination list. The destination list must be capable of
holding the elements from the source list. We express this by means of bounded wildcards: the output list is required
to have an element type with a lower bound T and the input list must have an element type with an upper bound T.

Let's study an example to explore the typical use of bounded wildcards and to explain why unbounded wildcards do
not suffice. It's the example of the copy method mentioned above. It copies elements from a source list into a
destination list. Let's start with a naive implementation of such a copy method.

Example (of a restrictive implementation of a copy method):

public class Collections {
 public static <T> void copy(List<T> dest, List<T> src) { // uses no wildcards
 for (int i=0; i<src.size(); i++)
 dest.set(i,src.get(i));
 }
}

This implementation of a copy method is more restrictive than it need be, because it requires that both input and output
collection must be lists with the exact same type. For instance, the following invocation - although perfectly sensible -
would lead to an error message:

Example (of illegal use of the copy method):

List<Object> output = new ArrayList<Object>();
List<Long> input = new ArrayList<Long>();
...
Collections.copy(output,input); // error: illegal argument types

The invocation of the copy method is rejected because the declaration of the method demands that both lists must be
of the same type. Since the source list is of type List<Long> and the destination list is of type List<Object> the
compiler rejects the method call, regardless of the fact that a list of Object references can hold Longs. If both list
were of type List<Object> or both were of type List<Long> the method call were accepted.

We could try to relax the method's requirements to the argument types and declare wildcard parameterized types as the
method parameter types. Declaring wildcard parameterized types as method parameter types has the advantage of
allowing a broader set of argument types. Unbounded wildcards allow the broadest conceivable argument set, because
the unbounded wildcard ? stands for any type without any restrictions. Let's try using an unbounded wildcard
parameterized type. The method would then look as follows:

Example (of a relaxed copy method; does not compile):

public class Collections {
 public static void copy(List<?> dest, List<?> src) { // uses unbounded wildcards
 for (int i=0; i<src.size(); i++)
 dest.set(i,src.get(i)); // error: illegal argument types
 }
}

It turns out that this relaxed method signature does not compile. The problem is that the get() method of a List<?>
returns a reference pointing to an object of unknown type. References pointing to objects of unknown type are
usually expressed as a reference of type Object. Hence List<?>.get() returns an Object.

On the other hand, the set() method of a List<?> requires something unknown, and "unknown" does not mean that
the required argument is of type Object. Requiring an argument of type Object would mean accepting everything that
is derived of Object. That's not what the set() method of a List<?> is asking for. Instead, "unknown" in this context
means that the argument must be of a type that matches the type that the wildcard ? stands for. That's a much stronger
requirement than just asking for an Object.

For this reason the compiler issues an error message: get() returns an Object and set() asks for a more specific, yet
unknown type. In other words, the method signature is too relaxed. Basically, a signature such as void copy(List<?
> dest, List<?> src) is saying that the method takes one type of list as a source and copies the content into
another - totally unrelated - type of destination list. Conceptually it would allow things like copying a list of apples
into a list of oranges. That's clearly not what we want.

What we really want is a signature that allows copying elements from a source list into a destination list with a
specific property, namely that it is capable of holding the source list's elements. Unbounded wildcards are too relaxed
for this purpose, as we've seen above, but bounded wildcards are suitable in this situation. A bounded wildcard carries
more information than an unbounded wildcard.

In our example of a copy method we can achieve our goal of allowing all sensible method invocations by means of
bounded wildcards, as in the following implementation of the copy method:

Example (of an implementation of the copy method that uses bounded wildcards):

public class Collections {
 public static <T> void copy
 (List<? super T> dest, List<? extends T> src) { // uses bounded wildcards
 for (int i=0; i<src.size(); i++)
 dest.set(i,src.get(i));
 }
}

In this implementation we require that a type T exists that is subtype of the output list's element type and supertype of
the input list's element type. We express this by means of wildcards: the output list is required to have an element type
with a lower bound T and the input list must have an element type with an upper bound T.

Example (of using the copy method with wildcards):

List<Object> output = new ArrayList<Object>();
List<Long> input = new ArrayList<Long>();
...
Collections.copy(output,input); // fine; T:= Number & Serializabe & Comparable<Number>

List<String> output = new ArrayList<String>();
List<Long> input = new ArrayList<Long>();
...
Collections.copy(output,input); // error

In the first method call T would have to be a supertype of Long and a subtype of Object, and luckily there is a
number of types that fall into this category, namely Number, Serializable and Comparable<Number>. Hence the
compiler can use any of the 3 types as type argument and the method invocation is permitted.

The second nonsensical method call is rejected by the compiler, because the compiler realizes that there is no type that
is subtype of String and supertype of Long.

Conclusion:
Bounded wildcards carry more information than unbounded wildcards. While an unbounded wildcard stands for a
representative from the family of all types, a bounded wildcards stands for a represenstative of a family of either
super- or subtypes of a type. Hence a bounded wildcard carries more type information than an unbounded wildcard.
The supertype of such a family is called the upper bound, the subtype of such a family is called the lower bound.

LINK TO THIS TypeArguments.FAQ103

REFERENCES What is a wildcard?
What is a wildcard instantiation?
How do wildcard instantiations with an upper bound relate to other instantiations of the same generic type?
How do wildcard instantiations with a lower bound relate to other instantiations of the same generic type?
Which super-subset relationships exist among wildcards?
What is a wildcard bound?
Which types are permitted as wildcard bounds?
What is the difference between a wildcard bound and a type parameter bound?
What is the difference between a Collection<?> and a Collection<Object>?

What do multi-level (or nested) wildcards mean?

It depends.

A multi-level wildcard is a wildcard that appears as the type argument of a type argument. The instantiations
Collection<Pair<String,?>> and Collection<? extends Pair<String,?>> are examples of multi-level
wildcards. Multi-level wildcard parameterized types are inherently difficult to interpret, because the wildcard can
appear on different levels. For illustration, let us discuss the difference between a Collection<Pair<String,?>> and
a Collection<? extends Pair<String,?>>. For sake of simplicity, let us assume Pair is a final class.

The type Collection<Pair<String,?>> is a concrete instantiation of the generic Collection interface. It is a
heterogenous collection of pairs of different types. It can contain elements of type Pair<String,Long>,
Pair<String,Date>, Pair<String,Object>, Pair<String,String>, and so on and so forth. In other words,
Collection<Pair<String,?>> contains a mix of pairs of different types of the form Pair<String,?>.

The type Collection<? extends Pair<String,?>> is a wildcard parameterized type; it does NOT stand for a
concrete parameterized type. It stands for a representative from the family of collections that are instantiations of the
Collection interface, where the type argument is of the form Pair<String,?>. Compatible instantiations are
Collection<Pair<String,Long>>, Collection<Pair<String,String>>, Collection<Pair<String,Object>>, or
Collection<Pair<String,?>>. In other words, we do not know which instantiation of Collection it stands for.

As a rule of thumb, you have to read multi-level wildcards top-down.

If the top-level type argument is a concrete type then the instantiation is a concrete type, probably a mixed bag of
something, if the wildcard appears further down on a lower level. In this sense, a Collection<Pair<String,?>> is a
collection of pairs of a certain form, that has lots of concrete subtypes. It's similar to a Collection<Object>, which is
a collection of a concrete type that has lots of subtypes and is a mixed bag of something that is a subtype of Object.

If the top-level type argument is a wildcard, then the type is not concrete. It is a placeholder for a representative from
a family of types. In this sense, a Collection<? extends Pair<String,?>> is a placeholder for a collection
instantiated for a particular unknown pair type of a certain form. It's similar to a Collection<?>, which is a
placeholder for a specific instantiation of the Collection interface, but it is not a concrete type.

Here is an example that illustrates the difference between Collection<Pair<String,?>> and Collection<?
extends Pair<String,?>>.

Example:

Collection<Pair<String,Long>> c1 = new ArrayList<Pair<String,Long>>();

Collection<Pair<String,Long>> c2 = c1; // fine
Collection<Pair<String,?>> c3 = c1; // error
Collection<? extends Pair<String,?>> c4 = c1; // fine

Of course, we can assign a Collection<Pair<String,Long>> to a Collection<Pair<String,Long>>. There is
nothing surprising here.

But we cannot assign a Collection<Pair<String,Long>> to a Collection<Pair<String,?>>. The parameterized
type Collection<Pair<String,Long>> is a homogenous collection of pairs of a String and a Long; the
parameterized type Collection<Pair<String,?>> is a heterogenous collection of pairs of a String and something
of unknown type. The heterogenous Collection<Pair<String,?>> could for instance contain a Pair<String,Date>
and that clearly does not belong into a Collection<Pair<String,Long>>. For this reason the assignment is not
permitted.

But then, we can assign a Collection<Pair<String,Long>> to a Collection<? extends Pair<String,?>>,
because the type Pair<String,Long> belongs to the family of types denoted by the wildcard ? extends
Pair<String,?>. This is because the type family denoted by the wildcard ? extends Pair<String,?> comprises all
subtypes of Pair<String,?>. Since we assumed that Pair is a final type, this type family includes all instantiations
of the generic type Pair where the first type argument is String and second type argument is an arbitrary type or
wildcard. The type family includes members such as Pair<String,Long>, Pair<String,Object>, Pair<String,?
extends Number>, and Pair<String,?> itself.

If we give up the simplification that Pair is a final class, then we must also consider subtypes of Pair.

Collection<Pair<String,?>> is then a heterogenous collection of pairs of different types of the form
Pair<String,?>, or subtypes thereof. It can contain elements of type Pair<String,Long>, Pair<String,Date>, but
also elements of type SubTypeOfPair<String,Date>, SubTypeOfPair<String,Object>, and so on and so forth.

Collection<? extends Pair<String,?>> stands for a representative from the family of collections that are
instantiations of the Collection interface, where the type argument is of the form Pair<String,?>, or subtypes
thereof. Compatible parameterized types are Collection<Pair<String,Long>>, Collection<Pair<String,Object>>,
but also Collection<SubTypeOfPair<String,Object>>, or Collection<SubTypeOfPair<String,?>>.

Here is an example that illustrates the difference between the concrete parameterized type
Collection<Pair<String,?>> and the wildcard parameterized type Collection<? extends Pair<String,?>> .

Example:

Collection<SubTypeOfPair<String,Long>> c1 = new ArrayList<SubTypeOfPair<String,Long>>();

Collection<Pair<String,Long>> c2 = c1; // error
Collection<SubTypeOfPair<String,Long>> c3 = c1; // fine
Collection<Pair<String,?>> c4 = c1; // error
Collection<? extends Pair<String,?>> c5 = c1; // fine

In this case, we cannot assign a Collection<SubTypeOfPair<String,Long>> to a Collection<Pair<String,Long>>,
because these two instantiations of the generic type Collection are unrelated and incompatible types. The
Collection<SubTypeOfPair<String,Long>> contains SubTypeOfPair<String,Long> objects, whereas the
Collection<Pair<String,Long>> contains a mix of objects of types that are subtypes of type Pair<String,Long>.
This includes, but is not limited to objects of type SubTypeOfPair<String,Long>. For this reason a
Collection<SubTypeOfPair<String,Long>> cannot be assigned to a Collection<Pair<String,Long>>.

Also, we cannot assign a Collection<SubTypeOfPair<String,Long>> to a Collection<Pair<String,?>> because
the parameterized type Collection<SubTypeOfPair<String,Long>> is a homogenous collection of objects of type
SubTypeOfPair<String,Long>, whereas the parameterized type Collection<Pair<String,?>> is a heterogenous
collection. The heterogenous Collection<Pair<String,?>> could for instance contain a Pair<String,Date> and
that clearly does not belong in a Collection<SubTypeOfPair<String,Long>>.

The assignment of a Collection<SubTypeOfPair<String,Long>> to a Collection<? extends Pair<String,?>> is

fine because the type SubTypeOfPair<String,Long> belongs to the family of types denoted by the wildcard ?
extends Pair<String,?>. This is because the type family denoted by the wildcard ? extends Pair<String,?>
comprises all subtypes of Pair<String,?>. Since we no longer assumed that Pair is a final type, this type family
includes all instantiations of the generic type Pair and any of its subtypes where the first type argument is String and
second type argument is an arbitrary type or wildcard. The type family includes members such as
Pair<String,Long>, Pair<String,Object>, Pair<String,? extends Number>, and Pair<String,?> itself, but also
SubTypeOfPair<String,Long>, SubTypeOfPair<String,Object>, SubTypeOfPair<String,? extends Number>, and
SubTypeOfPair<String,?> .

LINK TO THIS TypeArguments.FAQ104

REFERENCES What is the difference between a Collection<?> and a Collection<Object>?
Which super-subset relationships exist among wildcards?
What is the difference between a Collection<Pair<String,Object>>, a Collection<Pair<String,?>> and a Collection<? extends Pair<String,?>>?

If a wildcard appears repeatedly in a type argument section, does it stand for the same type?

No, each occurrence can stand for a different type.

If the same wildcard appears repeatedly in a type argument section each occurrence of the wildcard refers to a
potentially different type. It is similar to wildcards in a regular expression: in "s??" the wildcard need not stand for
the same character. "see", but also "sea" or "sew" or "saw" would be matching expressions. Each question mark stands
for a potentially different character. The same holds for wildcards in Java generics.

Example (using the same wildcard repeatedly):

Pair<?,?> couple = new Pair<String,String>("Orpheus","Eurydike");
Pair<?,?> xmas = new Pair<String,Date>("Xmas", new Date(104,11,24));

In the example above, the wildcard "?" can stand for the same type, such as String, but it need not do so. Each
wildcard can stand for a different type, such as String and Date for instance.

Conversely, different wildcards need not stand for different types. If the type families denoted by the two different
wildcards overlap, then the two different wildcards can stand for the same concrete type.

Example (using different wildcards):

Pair<? extends Appendable,? extends CharSequence> textPlusSuffix
 = new Pair<StringBuilder,String>(new StringBuilder("log"), ".txt");

Pair<? extends Appendable,? extends CharSequence> textPlusText
 = new Pair<StringBuilder,StringBuilder>(new StringBuilder("log"), new
StringBuilder(".txt"));

In the examples above, the different wildcards "? extends Appendable" and "? extends CharSequence" can stand
for different types, such as StringBuilder and String, but they can equally well stand for the same type, such as
StringBulder, provided the bounds permit it.

Below are a couple of examples where the same wildcard appears repeatedly and where the compiler rightly issues an
error message.

In the first example the wildcard appears twice in an parameterized type, namely in Pair<?,?>.

Example #1 (demonstrating the incompatibility of one wildcard to another):

class Pair<S,T> {
 private S first;
 private T second;
 public Pair(S s,T t) { first = s; second = t; }
 ...
 public static void flip(Pair<?,?> pair) {

 Object tmp = pair.first;
 pair.first = pair.second; // error: incompatible types
 pair.second = tmp; // error: incompatible types
 }
}
class Test {
 public static void test() {
 Pair<?,?> xmas = new Pair<String,Date>("Xmas",new Date(104,11,24));
 Pair.flip(xmas);

 Pair<?,?> name = new Pair<String,String>("Yves","Meyer");
 Pair.flip(name);
 }
}

The fields of the Pair<?,?> may be of different types. For instance, when the flip method is invoked with an
argument of type Pair<String,Date>, then first would be of type String, while second is of type Date, and the
fields cannot be assigned to each other. Even if the flip method is invoked with an argument of type
Pair<String,String>, i.e. both wildcards stand for the same type, namely String, the compiler does not know this
inside the implementation of the flip method. For this reason the compiler issues an error message in the
implementation of the flip method when the two fields of unknown - and potentially different types - are assigned to
each other.

In the second example the wildcard appears in an two instantiations of the same generic type, namely in
Collection<?>.

Example #2 (demonstrating the incompatibility of one wildcard to another):

class Utilities {
 public static void add(Collection<?> list1, Collection<?> list2) {
 for (Object o : list1)
 list2.add(o); // error: incompatible types
 }
}
class Test {
 public static void test() {
 Collection<?> dates = new LinkedList<Date>();
 Collection<?> strings = new LinkedList<String>();
 add(dates,strings);
 add(strings,strings);
 }
}

The two collections contain elements of two potentially different unknown types. The compiler complains when
elements from one collection are passed to the other collection, because the types of the elements might be
incompatible.

In the third example the wildcard appears in an two instantiations of two different generic type, namely in
Collection<? extends CharSequence> and Class<? extends CharSequence>.

Example #3 (demonstrating the incompatibility of one wildcard to another):

class Utilities {
 public static void method(Collection<? extends CharSequence> coll,
 Class <? extends CharSequence> type) {
 ...
 coll.add(type.newInstance()); // error: incompatible types
 ...
 }
}
class Test {
 public static void test() {
 List<StringBuilder> stringList = new LinkedList<StringBuilder>();

 method(stringList, String.class);
 }
}

The newInstance method of class Class<? extends CharSequence> creates an object of an unknown subtype of
CharSequence, while the collection Collection<? extends CharSequence> holds elements of a potentially different
subtype of CharSequence. The compiler complains when the newly created object is passed to the collection, because
the collection might hold objects of an incompatible type.

LINK TO THIS TypeArguments.FAQ105

REFERENCES What is a wildcard instantiation?
How can I make sure that the same wildcard stand for the same type?
What is a wildcard bound?
What is an unbounded wildcard?
What is a bounded wildcard?
Which super-subset relationships exist among wildcards?

Wildcard Bounds

What is a wildcard bound?

A reference type that is used to further describe the family of types denoted by a wildcard.

A wildcard can be unbounded, in which case it is denoted as "?". The unbounded wildcard stands for the family of all
types.

Alternatively a wildcard can have a bound. There are two types of bounds: upper and lower bounds. The syntax for a
bounded wildcard is either "? extends SuperType" (wildcard with upper bound) or "? super SubType" (wildcard
with lower bound). The terms "upper" and "lower" stem from the way, in which inheritance relationships between
types are denoted in modeling languages such as UML for instance.

The bound shrinks the family of types that the wildcard stands for. For instance, the wildcard "? extends Number"
stands for the family of subtypes of Numbe; type Number itself is included in the family. The wildcard "? super
Long" stands for the family of supertypes of Long; type Long itself is included.

Note, a wildcard can have only one bound. In can neither have both an upper and a lower bound nor several upper or
lower bounds. Constructs such as "? super Long extends Number" or "? extends Comparable<String> &
Cloneable" are illegal.

LINK TO THIS TypeArguments.FAQ201

REFERENCES What is a wildcard?
Which types are permitted as wildcard bounds?
What is the difference between a wildcard bound and a type parameter bound?

Which types are permitted as wildcard bounds?

All references types including parameterized types, but no primitive types.

All reference types can be used as a wildcard bound. This includes classes, interfaces, enum types, nested and inner
types, and array types. Only primitive types cannot be used as wildcard bound.

Example (of wildcard bounds):

List<? extends int> l0; // error
List<? extends String> l1;
List<? extends Runnable> l2;
List<? extends TimeUnit> l3;
List<? extends Comparable> l4;
List<? extends Thread.State> l5;
List<? extends int[]> l6;
List<? extends Object[]> l7;
List<? extends Callable<String>> l8;
List<? extends Comparable<? super Long>> l9;
List<? extends Class<? extends Number>> l10;
List<? extends Map.Entry<?,?>> l11;
List<? extends Enum<?>> l12;

The example only shows the various reference types as upper bound of a wildcard, but these type are permitted as
lower bound as well.

We can see that primitive types such as int are not permitted as wildcard bound.

Class types, such as String, and interface types, such as Runnable, are permitted as wildcard bound. Enum types,
such as TimeUnit (see java.util.concurrent.TimeUnit) are also permitted as wildcard bound. Note, that even
types that do not have subtypes, such as final classes and enum types, can be used as upper bound. The resulting
family of types has exactly one member then. For instance, "? extends String" stands for the type family consisting
of the type String alone. Following the same line of logic, the wildcard "? super Object" is permitted, too,
although class Object does not have a supertype. The resulting type family consists of type Object alone.

Raw types are permitted as wildcard bound; Comparable is an example.

Thread.State is an example of a nested type; Thread.State is an enum type nested into the Thread class. Non-
static inner types are also permitted.

An array type, such as int[] and Object[], is permitted as wildcard bound. Wildcards with an array type as a bound
denote the family of all sub- or supertypes of the wildcard type. For instance, "? extends Object[]" is the family of
all array types whose component type is a reference type. int[] does not belong to that family, but Integer[] does.
Similarly, "? super Number[]" is the family of all supertypes of the array type, such as Object[], but also Object,
Cloneable and Serializable.

Parameterized types are permitted as wildcard bound, including concrete parameterized types such as
Callable<String>, bounded wildcard parameterized types such as Comparable<? super Long> and Class<?
extends Number>, and unbounded wildcard parameterized types such as Map.Entry<?,?>. Even the primordial
supertype of all enum types, namely class Enum, can be used as wildcard bound.

LINK TO THIS TypeArguments.FAQ202

REFERENCES What is a wildcard?
What is a wildcard bound?

What is the difference between a wildcard bound and a type parameter bound?

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/TimeUnit.html

A wildcard can have only one bound, while a type parameter can have several bounds.
A wildcard can have a lower or an upper bound, while there is no such thing as a lower bound for a type
parameter.

Wildcard bounds and type parameter bounds are often confused, because they are both called bounds and have in part
similar syntax.

Example (of type parameter bound and wildcard bound):

class Box<T extends Comparable<T> & Cloneable>
 implements Comparable<Box<T>>, Cloneable {

 private T theObject;
 public Box(T arg) { theObject = arg; }
 public Box(Box<? extends T> box) { theObject = box.theObject; }
 ...
 public int compareTo(Box<T> other) { ... }
 public Box<T> clone() { ... }
}

The code sample above shows a type parameter T with two bounds, namely Comparable<T> and Cloneable, and a
wildcard with an upper bound T.

The type parameter bounds give access to their non-static methods. For instance, in the example above, the bound
Comparable<T> makes is possible that the compareTo method can be invoked on variables of type T. In other words,
the compiler would accept an expression such as theObject.compareTo(other.theObject).

The wildcard bound describes the family of types that the wildcard stands for. In the example, the wildcard "?
extends T" denotes the family of all subtypes of T. It is used in the argument type of a constructor and permits that
box objects of a box type from the family Box<? extends T> can be supplied as constructor arguments. It allows that
a Box<Number> can be constructed from a Box<Long>, for instance.

The syntax is similar and yet different:

Syntax

type parameter bound TypeParameter extends Class & Interface1 & ... & InterfaceN

wildcard bound

upper bound
lower bound

? extends SuperType
? super SubType

A wildcard can have only one bound, either a lower or an upper bound. A list of wildcard bounds is not permitted.

A type parameter, in constrast, can have several bounds, but there is no such thing as a lower bound for a type
parameter.

LINK TO THIS TypeArguments.FAQ203

REFERENCES What is a wildcard?
What is a wildcard bound?
What is a type parameter?
What is a type parameter bound?
Why is there no lower bound for type parameters?

CONTENT PREVIOUS NEXT INDEX

Practicalities - Programming With Java Generics
© Copyright 2004-2022 by Angelika Langer. All Rights Reserved.

Using Generic Types

Should I prefer parameterized types over raw types?
Why shouldn't I mix parameterized and raw types, if I feel like it?
Should I use the generic collections or better stick to the old non-generic collections?
What is a checked collection?
What is the difference between a Collection<?> and a Collection<Object>?
How do I express that a collection is a mix of objects of different types?
What is the difference between a Collection<Pair<String,Object>>, a Collection<Pair<String,?>> and a Collection<? extends Pair<String,?
>>?
How can I make sure that the same wildcard stands for the same type?

Using Generic Methods

Why doesn't method overloading work as I expect it?
Why doesn't method overriding work as I expect it?

Coping With Legacy

What happens when I mix generic and non-generic legacy code?
Should I re-engineer all my existing classes and generify them?
How do I generify an existing non-generic type or method?
Can I safely generify a supertype, or does it affect all subtypes?
How do I avoid breaking binary compatibility when I generify an existing type or method?

Defining Generic Types and Methods

Which types should I design as generic types instead of defining them as regular non-generic types?
Do generics help designing parallel class hierarchies?
When would I use an unbounded wildcard instantiation instead of a bounded or concrete instantiation?
When would I use a wildcard parameterized type instead of a concrete parameterized type?
When would I use a wildcard parameterized type with an lower bound?
How do I recover the actual type of the this object in a class hierarchy?
What is the "getThis" trick?
How do I recover the element type of a container?
What is the "getTypeArgument" trick?

Designing Generic Methods

Why does the compiler sometimes issue an unchecked warning when I invoke a "varargs" method?
What is a "varargs" warning?
How can I suppress a "varargs" warning?
When should I refrain from suppressing a "varargs" warning?
Which role do wildcards play in method signatures?
Which one is better: a generic method with type parameters or a non-generic method with wildcards?
Under which circumstances are the generic version and the wildcard version of a method equivalent?
Under which circumstances do the generic version and the wildcard version of a method mean different things?
Under which circumstances is there no transformation to the wildcard version of a method possible?
Should I use wildcards in the return type of a method?
How do I implement a method that takes a wildcard argument?
How do I implement a method that takes a multi-level wildcard argument?
I want to pass a U and a X<U> to a method. How do I correctly declare that method?

Working With Generic Interfaces

Can a class implement different instantiations of the same generic interface?
Can a subclass implement a parameterized interface other than any of its superclasses does?
What happens if a class implements two parameterized interfaces that define the same method?
Can an interface type nested into a generic type use the enclosing type's type parameters?

Implementing Infrastructure Methods

How do I best implement the equals method of a generic type?
How do I best implement the clone method of a generic type?

Using Runtime Type Information

What does the type parameter of class java.lang.Class mean?
How do I pass type information to a method so that it can be used at runtime?
How do I generically create objects and arrays?
How do I perform a runtime type check whose target type is a type parameter?

Reflection

Which information related to generics can I access reflectively?
How do I retrieve an object's actual (dynamic) type?
How do I retrieve an object's declared (static) type?
What is the difference between a generic type and a parameterized type in reflection?
How do I figure out whether a type is a generic type?
Which information is available about a generic type?
How do I figure out whether a type is a parameterized type?
Which information is available about a parameterized type?
How do I retrieve the representation of a generic method?
How do I figure out whether a method is a generic method?
Which information is available about a generic method?
Which information is available about a type parameter?
What is a generic declaration?
What is a wildcard type?
Which information is available about a wildcard?

Programming With Generics

Using Generic Types and Methods

Should I prefer parameterized types over raw types?

Yes, using parameterized types has various advantages and is recommended, unless you have a compelling reason to prefer the raw type.

It is permitted to use generic types without type arguments, that is, in their raw form. In principle, you can entirely ignore Java Generics and use
raw types throughout your programs. It is, however, recommended that type arguments are provided when a generic type is used, unless there is a
compelling reason not to do so.

Providing the type arguments rather than using the raw type has a couple of advantages:

Improved readability. An instantiation with type arguments is more informative and improves the readability of the source code.

Better tool support. Providing type arguments enables development tools to support you more effectively: IDEs (= integrated develepment
environments) can offer more precise context-sensitive information; incremental compilers can flag type errors the moment you type in the
incorrect source code. Without providing type arguments the errors would go undetected until you start testing your program.

Fewer ClassCastExceptions. Type arguments enable the compiler to perform static type checks to ensure type safety at compile time, as
opposed to dynamic type checks performed by the virtual machine at runtime. As a result there are fewer opportunities for the program to
raise a ClassCastException.

Fewer casts. More specific type informations is available when type arguments are provided, so that hardly any casts are needed compared
to the substantial number of casts that clutter the source code when raw types are used.

No unchecked warnings. Raw types lead to "unchecked" warning, which can be prevented by use of type arguments.

No future deprecation. The Java Language Specification states that raw types might be deprecated in a future version of Java, and might
ultimately be withdrawn as a language feature.

Raw types have an advantage, too:

Zero learning effort. If you ignore Java Generics and use raw types everywhere in you program you need not familiarize yourself with new
language features or learn how to read any puzzling error messages.

Advantages that are no advantages:

Improved Performance. Especially C++ programmers might expect that generic programs are more efficient than non-generic programs,
because C++ templates can boost runtime efficiency. However, if you take a look under the hood of the Java compiler and study how the
compiler translates generic source code to byte code you realize that Java code using parameterized types does not perform any faster than
non-generic programs.

LINK TO THIS Practicalities.FAQ001

REFERENCES How does the compiler translate Java generics?
What is an "unchecked" warning?
What is the benefit of using Java generics?

Why shouldn't I mix parameterized and raw types, if I feel like it?

Because it is poor style and highly confusing to readers of your source code.

Despite of the benefits of parameterized types you might still prefer use of raw types over using pre-defined generic types in their parameterized
form, perhaps because the raw types look more familiar. To some extent it is a matter of style and taste and both styles are permitted. No matter
what your preferences are: be consistent and stick to it. Either ignore Java generics and use raw type in all places, or take advantage of the
improved type-safety and provide type arguments in all places. Mixing both styles is confusing and results in "unchecked" warnings that can and
should be avoided.

Naturally, you have to mix both styles when you interface with source code that was written before the advent of Java generics. In these cases you
cannot avoid the mix and the inevitable "unchecked" warnings. However, one should never have any "unchecked" warnings in code that is written
in generic style and does not interface with non-generic APIs.

Here is a typical beginner's mistake for illustration.

Example (of poor programming style):

List<String> list = new ArrayList<String>();
Iterator iter = list.iterator();
String s = (String) iter.next();
...

Beginners often start out correctly providing type arguments and suddenly forget, in the heat of the fighting, that methods of parameterized types
often return other parameterized types. This way they end up with a mix of generic and non-generic programming style, where there is no need
for it. Avoid mistakes like this and provide type arguments in all places.

Example (corrected):

List<String> list = new ArrayList<String>();
Iterator<String> iter = list.iterator();
String s = iter.next();
...

Here is an example of a code snippet that produces avoidable "unchecked" warnings.

Example (of avoidable "unchecked" warning):

void f(Object obj) {
 Class type = obj.getClass();
 Annotation a = type.getAnnotation(Documented.class); // unchecked warning
 ...
}

warning: [unchecked] unchecked call to <A>getAnnotation(java.lang.Class<A>) as a member of the raw type
java.lang.Class
 Annotation a = type.getAnnotation(Documented.class);
 ^

The getClass method returns an instantiation of class Class, namely Class<? extends X>, where X is the erasure of the static type of the
expression on which getClass is called. In the example, the parameterization of the return type is ignored and the raw type Class is used instead.
As a result, certain method calls, such as the invocation of getAnnotation, are flagged with an "unchecked" warning.

In general, it is recommended that type arguments are provided unless there is a compelling reason not to do so. In case of doubt, often the
unbounded wildcard parameterized type is the best alternative to the raw type. It is sematically equivalent, eliminates "unchecked" warnings and
yields to error messages if their use is unsafe.

Example (corrected):

void f(Object obj) {
 Class<?> type = obj.getClass();
 Annotation a = type.getAnnotation(Documented.class);
 ...
}

LINK TO THIS Practicalities.FAQ002

REFERENCES What is the benefit of using Java generics?
What does type-safety mean?
What is an "unchecked" warning?

What is the raw type?
What is a parameterized or generic)type?
How is a generic type instantiated?
What is an unbounded wildcard parameterized type?

Should I use the generic collections or stick to the old non-generic collections?

Provide type arguments when you use collections; it improves clarity and expressiveness of your source code.

The JDK collection framework has been re-engineered. All collections are generic types since Java 5.0. In principle, you can choose whether you
want to use the pre-defined generic collections in their parameterized or raw form. Both is permitted, but use of the parameterized form is
recommended because it improves the readability of your source code.

Let us compare the generic and non-generic programming style and see how they differ.

Example (of non-generic style):

 final class HtmlProcessor {
 public static Collection process(Collection files) {
 Collection imageFileNames = new TreeSet();
 for (Iterator i = files.iterator(); i.hasNext();) {
 URI uri = (URI)i.next();
 Collection tokens = HtmlTokenizer.tokenize(new File(uri));
 imageFileNames.addAll(ImageCollector.collect(tokens)); // unchecked warning
 }
 return imageFileNames;
 }
 }
 final class ImageCollector {
 public static Collection collect(Collection tokens) {
 Set images = new TreeSet();
 for (Iterator i = tokens.iterator(); i.hasNext();) {
 HtmlToken tok = (HtmlToken)i.next();
 if (tok.getTag().3("img") && tok.hasAttribute("src")) {
 Attribute attr = tok.getAttribute("src");
 images.add(attr.getValue()); // unchecked warning
 }
 }
 return images;
 }
 }

From the code snippet above it is relatively difficult to tell what the various collections contain. This is typical for non-generic code. The raw
type collections do not carry information regarding their elements. This lack of type information also requires that we cast to the alledged element
type each time an element is retrieved from any of the collections. Each of these casts can potentially fail at runtime with a ClassCastException.
ClassCastExceptions are a phenomenon typical to non-generic code.

If we translate this non-generic source code with a Java 5.0 compiler, we receive "unchecked" warnings when we invoke certain operations on the
raw type collections. We would certainly ignore all these warnings, or suppress them with the SuppressWarnings annotation.

Example (of generic counterpart):

 final class HtmlProcessor {
 public static Collection<String> process(Collection<URI> files) {
 Collection<String> imageFileNames = new TreeSet<String>();
 for (URI uri : files) {
 Collection<HtmlToken> tokens = HtmlTokenizer.tokenize(new File(uri));
 imageFileNames.addAll(ImageCollector.collect(tokens));
 }
 return imageFileNames;
 }
 }
 final class ImageCollector {
 public static Collection<String> collect(Collection<HtmlToken> tokens) {
 Set<String> images = new TreeSet<String>();
 for (HtmlToken tok : tokens) {
 if (tok.getTag().equals("img") && tok.hasAttribute("src")) {
 Attribute attr = tok.getAttribute("src");
 images.add(attr.getValue());
 }
 }
 return images;
 }
 }

From the generic source code we can easily tell what type of elements are stored in the various collections. This is one of the benefits of generic
Java: the source code is substantially more expressive and captures more of the programmer's intent. In addition it enables the compiler to perform
lots of type checks at compile time that would otherwise be performed at runtime. Note that we got rid of all casts. As a consequence there will be
no runtime failure due to a ClassCastException.

This is a general rule in Java 5.0: if your source code compiled without any warnings then there will be no unexpected ClassCastExceptions at
runtime. Of course, if your code contains explicit cast expressions any exceptions resulting from these casts are not considered unexpected. But
the number of casts in your source code will drop substantially with the use of generics.

LINK TO THIS Practicalities.FAQ003

REFERENCES package java.util
Should I prefer parameterized types over raw types?
What is the benefit of using Java generics?
What is an "unchecked" warning?
How can I disable or enable unchecked warnings?
What is the SuppressWarnings annotation?
What is the raw type?
What is a parameterized or generic type?
How is a generic type instantiated?

What is a checked collection?

A view to a regular collection that performs a runtime type check each time an element is inserted.

Despite of all the type checks that the compiler performs based on type arguments in order to ensure type safety it is still possible to smuggle
elements of the wrong type into a generic collection. This can happen easily when generic and non-generic code is mixed.

Example (of smuggling an alien into a collection):

class Legacy {
 public static List create() {
 List rawList = new ArrayList();
 rawList.add("abc"); // unchecked warning
 ...
 return rawList;
 }
 public static void insert(List rawList) {
 ...
 rawList.add(new Date()); // unchecked warning
 ...
 }
}
class Modern {
 private void someMethod() {
 List<String> stringList = Legacy.create(); // unchecked warning
 Legacy.insert(stringList);
 Unrelated.useStringList(stringList);
 }
}
class Unrelated {
 public static void useStringList(List<String> stringList) {
 ...
 String s = stringList.get(1); // ClassCastException
 ...
 }
}

An "alien" Date object is successfully inserted into a list of strings. This can happen inadvertantly when a parameterized type is passed to a piece
of legacy code that accepts the corresponding raw type and then adds alien elements. The compiler can neither detect nor prevent this kind of
violation of the type safety, beyond issuing an "unchecked" warning when certain methods of the raw type are invoked. The inevitable type
mismatch will later show up in a potentially unrelated part of the program and will mainfest itself as an unexpected ClassCastException.

For purposes of diagnostics and debugging JDK 5.0 adds a set of “checked” views to the collection framework (see
java.util.Collections), which can detect the kind of problem explained above. If a checked view is used instead of the original collection then
the error is reported at the correct location, namely when the "alien" element is inserted.

Example (of using a checked collection):

class Legacy {
 public static List create() {
 List rawList = new ArrayList();
 rawList.add("abc"); // unchecked warning

http://java.sun.com/j2se/1.5.0/docs/api/java/util/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html

 ...
 return rawList;
 }
 public static void insert(List rawList) {
 ...
 rawList.add(new Date()); // ClassCastException
 ...
 }
}
class Modern {
 private void someMethod() {
 List<String> stringList
 = Collections.checkedList(Legacy.create(),String.class); // unchecked warning
 Legacy.insert(stringList);
 Unrelated.useStringList(stringList);
 }
}
class Unrelated
 public static void useStringList(List<String> stringList) {
 ...
 String s = stringList.get(1);
 ...
 }
}

The checked collection is a view to an underlying collection, similar to the unmodifiable and synchronized views provided by class Collections.
The purpose of the checked view is to detect insertion of "aliens" and prevent it by throwing a ClassCastException in case the element to be
inserted is of an unexptected type. The expected type of the elements is provided by means of a Class object when the checked view is created.
Each time an element is added to the checked collection a runtime type check is performed to make sure that element is of an acceptable type.
Here is a snippet of the implementation of the checked view for illustration.

Example (excerpt from a checked view implementation):

public class Collections {
 public static <E> Collection<E> checkedCollection(Collection<E> c, Class<E> type) {
 return new CheckedCollection<E>(c, type);
 }
 private static class CheckedCollection<E> implements Collection<E> {
 final Collection<E> c;
 final Class<E> type;

 CheckedCollection(Collection<E> c, Class<E> type) {
 this.c = c;
 this.type = type;
 }
 public boolean add(E o){
 if (!type.isInstance(o))
 throw new ClassCastException();
 return c.add(o);
 }
 }
}

The advantage of using a checked view is that the error is reported at the correct location. The downside of using a checked collection is the
performance overhead of an additional dynamic type check each time an element is inserted into the collection.

The error detection capabilities of the checked view are somewhat limited. The type check that is performed when an element is inserted into a
checked collection is performed at runtime - using the runtime type representation of the expected element type. If the element type is a
parameterized type the check cannot be exact, because only the raw type is available at runtime. As a result, aliens can be inserted into a checked
collection, although the checked collection was invented to prevent exactly that.

Example (of limitations of checked collections):

class Legacy {
 public static List legacyCreate() {
 List rawList = new ArrayList();
 rawList.add(new Pair("abc","xyz")); // unchecked warning
 ...
 return rawList;
 }
 public static void legacyInsert(List rawList) {
 ...
 rawList.add(new Pair(new Date(),"Xmas")); // unchecked warning
 ...
 }
}

class Modern {
 private void someModernMethod() {
 List<Pair<String,String>> stringPairs
 = Collections.checkedList(legacyCreate(),Pair.class); // unchecked warning
 Legacy.insert(stringPairs);
 Unrelated.useStringPairs(stringPairs);
 }
}
class Unrelated {
 public static void useStringPairs(List<Pair<String,String>> stringPairList) {
 ...
 String s = stringPairList.get(1).getFirst(); // ClassCastException
 ...
 }
}

The checked view can only check against the raw type Pair and cannot prevent that an alien pair of type Pair<Date,String> is inserted into the
checked view to a collection of Pair<String,String>. Remember, parameterized types do not have an exact runtime type representation and
there is not class literal for a parameterized type that we could provide for creation of the checked view.

Note, that a checked view to a collection of type Pair<String,String> cannot be created without a warning.

Example:

List<Pair<String,String>> stringPairs
 = Collections.checkedList
 (new ArrayList<Pair<String,String>>(),Pair.class); // error

List<Pair<String,String>> stringPairs
 = Collections.checkedList
 ((List<Pair>)(new ArrayList<Pair<String,String>>()),Pair.class); // error

List<Pair<String,String>> stringPairs
 = Collections.checkedList
 ((List)(new ArrayList<Pair<String,String>>()),Pair.class); // unchecked warning

We cannot create a checked view to a parameterized type such as List<Pair<String,String>>, because it is required that we supply the runtime
type representation of the collection's element type as the second argument to the factory method Collections.checkedList. The element type
Pair<String,String> does not have a runtime type representation of its own; there is no such thing as Pair<String,String>.class. At best,
we can specify the raw type Pair as the runtime type representation of the collection's element type. But this is the element type of a collection
of type List<Pair>, not of a List<Pair<String,String>>.

This explains why we have to add a cast. The natural cast would be to type List<Pair>, but the conversion from
ArrayList<Pair<String,String>> toList<Pair> is not permitted. These two types a inconvertible because they are instantiations of the same
generic type for different type arguments.

As a workaround we resort to the raw type List, because the conversion ArrayList<Pair<String,String>> to List is permitted for reasons of
compatibility. Use of the raw type results in the usual "unchecked" warnings. In this case the compiler complains that we pass a raw type List as
the first arguments to the Collections.checkedList method, where actually a List<Pair> is exptected.

In general, we cannot create a checked view to an instantiation of a collection whose type argument is a parameterized type (such as
List<Pair<String,String>>). This is only possible using debatable casts, as demonstrated above. However, it is likely that checked collections
are used in cases where generic and non-generic legacy code is mixed, because that is the situation in which alien elements can be inserted into a
collection inadvertantly. In a mixed style context, you might not even notice that you work around some of the compiler's type checks, when you
create a checked view, because you have to cope with countless "unchecked" warnings anyway.

The point to take home is that checked views provide a certain safety net for collections whose element type is a raw type, but fails to provide the
same kind of safety for collections whose element type is a parameterized type.

LINK TO THIS Practicalities.FAQ004

REFERENCES class java.util.Collections
What is an "unchecked" warning?
What is the raw type?
What happens when I mix generic and non-generic code?
How do I pass type information to a method so that it can be used at runtime?
How do I perform a runtime type check whose target type is a type parameter?
Why is there no class literal for concrete parameterized types?
How does the compiler translate Java generics?
What is type erasure?
What is the type erasure of a parameterized type?

What is the difference between a Collection<?> and a Collection<Object>?

Collection<Object> is a heterogenous collection, while Collection<?> is a homogenous collection of elements of the same unknown type.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html

The type Collection<Object> is a heterogenous collection of objects of different types. It's a mixed bag and can contain elements of all
reference types.

The type Collection<?> stands for a representative from the family of types that are instantiations of the generic interface Collection, where the
type argument is an arbitrary reference type. For instance, it refers to a Collection<Date>, or a Collection<String>, or a Collection<Number>,
or even a Collection<Object>.

A Collection<?> is a homogenous collection in the sense that it can only contain elements that have a common unknown supertype, and that
unknown supertype might be more restrictive than Object. If the unknown supertype is a final class then the collection is truly homogenous.
Otherwise, the collection is not really homogenous because it can contain objects of different types, but all these types are subtypes of the
unknown supertype. For instance, the Collection<?> might stand for Collection<Number>, which is homogenous in the sense that it contains
numbers and not apples or pears, yet it can contain a mix of elements of type Short, Integer, Long, etc.

A similar distinction applies to bounded wildcards, not just the unbounded wildcard "?".

A List<Iterable> is a concrete parameterized type. It is a mixed list of objects whose type is a subtype of Iterable. I can contain an
ArrayList and a TreeSet and a SynchronousQueue, and so on.

A List<? extends Iterable> is a wildcard parameterized type and stands for a representative from the family of types that are instantiations of
the generic interface List, where the type argument is a subtype of Iterable, or Iterable itself. Again, the list is truly homogenous if the
unknown subtype of Iterable is a final class. Otherwise, it is a mix of objects with a common unknown supertype and that supertype itself is a
subtype of Iterable. For example, List<? extends Iterable> might stand for List<Set>, which is homogenous in the sense that it contains
sets and not lists or queues. Yet the List<Set> can be heterogenous because it might contain a mix of TreeSets and HashSets.

LINK TO THIS Practicalities.FAQ005

REFERENCES What is a concrete parameterized type?
What is a wildcard parameterized type?

How do I express that a collection is a mix of objects of different types?

Using wildcard instantiations of the generic collections.
Occasionally, we want to refer to sequences of objects of different types. An example would be a List<Object> or a Object[]. Both denote
sequences of objects of arbitrary types, because Object is the supertype of all reference types.

How do we express a sequence of objects not of arbitrary different types, but of different instantiations of a certain generic type? Say, we need to
refer to a sequence of pairs of arbitrary elements. We would need the supertype of all instantiations of the generic Pair type. This supertype is the
unbounded wildcard instantiation Pair<?,?>. Hence a List<Pair<?,?>> and a Pair<?,?>[] would denote sequences of pairs of different types.

of any type of any pair type
collection List<Object> List<Pair<?,?>>

array Object[] Pair<?,?>[]

When we want to refer to a mixed sequence of certain types, instead of all arbitrary types, we use the supertype of those "certain types" to express
the mixed sequence. Examples are List<Number> or Number[]. The corresponding mixed sequences of instantiations of a generic type is expressed
in a similar way. A mixed sequences of pairs of numbers can be expressed as List<Pair<? extends Number, ? extends Number>> or as Pair<?
extends Number, ? extends Number>[].

of any number type of any type of pair of numbers

collection List<Number> List<Pair<? extends
Number,? extends Number>>

array Number[] Pair<? extends Number,?
extends Number>[] *)

*) Legal as the type of reference variable, but illegal in a new expression.

The array type Pair<? extends Number, ? extends Number>[] needs further explanation. This type would in principle denote a mixed sequence
of pairs of different type, but this array type is not overly useful. It can only be used for declaration of reference variables, while it must not appear in
new expressions. That is, we can declare reference variables of type Pair<? extends Number, ? extends Number>[], but the reference can never
refer to an array of its type, because no such array can be created.

Example (of illegal array creation):

Pair<? extends Number, ? extends Number>[] makeNumberPairs(int size) {
 return new Pair<? extends Number, ? extends Number>[size]; // error
}

error: generic array creation
return new Pair<? extends Number, ? extends Number>[size];
 ^

By and large an array type such as Pair<? extends Number, ? extends Number>[] is not particularly useful, because it cannot refer to an array of
its type. It can refer to an array of the corresponding raw type, i.e. Pair[], or to an array of a non-generic subtype, e.g.Point[], where Point is a
subclass of Pair<Double,Double> for instance. In each of these cases using a reference variable of type Pair<? extends Number, ? extends

Number>[] offers
no advantage over using a reference variable that matches the type of the array being refered to. Quite the converse; it is error prone and should be
avoided. This rules applies to all array types with a component type that is a concrete or bounded wildcard parameterized type. For details see
ParameterizedTypes.FAQ104A and ParameterizedTypes.FAQ307A.

Note that arrays of unbounded wildcard parameterized types do not suffer from this restriction. The creation of an array of an unbounded wildcard
parameterized type is permitted, because the unbounded wildcard parameterized type is a so-called reifiable type, so that an array reference variable
with an unbounded wildcard parameterized type as its component type, such as Pair<?,?>[], can refer to an array of its type.

Example (of legal array creation):

Pair<?,?>[] makeNumberPairs(int size) {
 return new Pair<?,?>[size]; // fine
}

LINK TO THIS Practicalities.FAQ006
REFERENCES Can I create an object whose type is a wildcard parameterized type?

Can I create an array whose component type is a wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is a concrete parameterized type?
Can I declare a reference variable of an array type whose component type is a bounded wildcard parameterized type?
Can I declare a reference variable of an array type whose component type is an unbounded wildcard parameterized type?
What is a reifiable type?

What is the difference between a Collection<Pair<String,Object>>, a Collection<Pair<String,?>> and a Collection<? extends
Pair<String,?>>?

All three types refer to collections that hold pairs where the first part is a String and the second part is of an arbitrary type. The differences
are subtle.

The three parameterized types are relatively similar. They all refer to collections that hold pairs where the first part is a String and the second
part is of an arbitrary type.

Let us start with a comparison of the two concrete parameterized types Collection<Pair<String,Object>> and Collection<Pair<String,?>>.
The both contain pairs where the first part is a String. The individual pairs stored in the collection can for instance contain a String and a Date,
or a String and an Object, or a String and a String. The difference lies in the types of the pairs that can be added to the two collections.

Example (using a Collection<Pair<String,Object>>):

Collection<Pair<String,Object>> c = new ArrayList<Pair<String,Object>>();

c.add(new Pair<String,Date> ("today", new Date())); // error: illegal argument type
c.add(new Pair<String,Object>("today", new Date())); // fine

c.add(new Pair<String,String>("name","Pete Becker")); // error: illegal argument type
c.add(new Pair<String,Object>("name","Pete Becker")); // fine

The example demonstrates that only pairs of type Pair<String,Object> can be added to a Collection<Pair<String,Object>>. A
Collection<Pair<String,Object>> is a homogenous collections of elements of the same type. The individual pairs may contain different
things, as long as the type of the pair is Pair<String,Object>. For instance, a pair may consist of a String and a Date, but it must not be of
type Pair<String,Date>.

Example (using a Collection<Pair<String,?>>):

Collection<Pair<String,?>> c = new ArrayList<Pair<String,?>>();

c.add(new Pair<String,Date> ("today", new Date())); // fine
c.add(new Pair<String,Object>("today", new Date())); // fine

c.add(new Pair<String,String>("name","Pete Becker")); // fine
c.add(new Pair<String,Object>("name","Pete Becker")); // fine

The example illustrates that a Collection<Pair<String,?>> accepts all types of pairs as long as the first type argument is String. For instance,
a pair of type Pair<String,Date> is accepted. A Collection<Pair<String,?>> is a heterogenous collections of elements of the similar types.

The key difference between a Collection<Pair<String,Object>> and a Collection<Pair<String,?>> is that the first contains elements of the
same type and the latter contains elements of different similar types.

The type Collection<? extends Pair<String,?>> is fundamentally different. It is a wildcard parameterized type, not a concrete parameterized
type. We simply do not know what exactly a reference variable of the wildcard type refers to.

Example (using a Collection<? extends Pair<String,?>>):

Collection<? extends Pair<String,?>> c = new ArrayList<Pair<String,?>>();

c.add(new Pair<String,Date> ("today", new Date())); // error: add method must not be called
c.add(new Pair<String,Object>("today", new Date())); // error: add method must not be called

c.add(new Pair<String,String>("name","Pete Becker")); // error: add method must not be called
c.add(new Pair<String,Object>("name","Pete Becker")); // error: add method must not be called

The type Collection<? extends Pair<String,?>> stands for a representative from the family of all instantiations of the generic type
Collection where the type argument is a subtype of type Pair<String,?>. This type family includes members such as Pair<String,String>,
Pair<String,Object>, Pair<String,? extends Number>, and Pair<String,?> itself .

Methods like add must not be invoked through a reference of a wildcard type. This is because the add method takes an argument of the unknown
type that the wildcard stands for. Using the variable c of the wildcard type Collection<? extends Pair<String,?>>, nothing can be added to
the collection. This does not mean that the collection being refered to does not contain anything. We just do not know what exactly the type if the
collection is and consequently we do not know what type of elements it contains. All we know is that is contains pairs where the first part is a
String. But we do not know of which type the second part of the pair is, or whether or not all pairs are of the same type.

So far, we've silently assumed that Pair is a final class. What if it has subtypes? Say, it has a subtype class SubTypeOfPair<X,Y> extends
Pair<X,Y>.

In that case, a Collection<Pair<String,Object>> may not only contain objects of type Pair<String,Object>, but also objects of type
SubTypeOfPair<String,Object>.

A Collection<Pair<String,?>> may not only contain objects of different pair types such as Pair<String,Date> and Pair<String,Object>,
but also objects of subtypes of those, such as SubTypeOfPair<String,Date> and SubTypeOfPair<String,Object>.

The type Collection<? extends Pair<String,?>> stands for a representative from the family of all instantiations of the generic type
Collection where the type argument is a subtype of type Pair<String,?>. This type family is now even larger. It does not only include
members such as Pair<String,String>, Pair<String,Object>, Pair<String,? extends Number>, and Pair<String,?> itself, but also type
such as SubTypeOfPair<String,String>, SubTypeOfPair<String,Object>, SubTypeOfPair<String,? extends Number>, and
SubTypeOfPair<String,?>.

LINK TO THIS Practicalities.FAQ006A

REFERENCES What is a bounded wildcard?
Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
What is the difference between a Collection<?> and a Collection<Object>?
Which super-subset relationships exist among wildcards?

How can I make sure that a wildcard that occurs repeatedly in the same scope stands for the same type?

In general you can't.

If the same wildcard appears repeatedly, each occurrence of the wildcard stands for a potentially different type. There is no way to make sure that
the same wildcard represents the same type.

Example (using the same wildcard repeatedly):

Pair<?,?> couple = new Pair<String,String>("Orpheus","Eurydike");
Pair<?,?> xmas = new Pair<String,Date>("Xmas", new Date(104,11,24));

There is nothing you can do to make sure that a reference variable of type Pair<?,?> represents a pair of elements of the same type.

Depending on the circumstances there might be work-arounds that achieve this goal. For instance, if the type Pair<?,?> is the type of a method
argument, it might be possible to generify the method to ensure that the method argument is a pair of elements of the same type.

For instance, the following method

void someMethod(Pair<?,?> pair) { ... }

accepts all types of pairs. It is mostly equivalent to the following generic method:

<X,Y> void someMethod(Pair<X,Y> pair) { ... }

In order to make sure that only pairs of elements of the same type are passed to the method, the method can be generified as follows:

<T> void someMethod(Pair<T,T> pair) { ... }

Now it is guaranteed that the method accepts only pairs of elements of the same type.

LINK TO THIS Practicalities.FAQ007

REFERENCES What is a wildcard parameterized type?
If a wildcard appears repeatedly in a type argument section, does it stand for the same type?

Using Generic Methods

Why doesn't method overloading work as I expect it?

Because there is only one byte code representation of each generic type or method.

When you invoke an overloaded method and pass an argument to the method whose type is a type variable or involves a type variable, you might
observe surprising results. Let us study an example.

Example (of invocation of an overloaded method):

static void overloadedMethod(Object o) {
 System.out.println("overloadedMethod(Object) called");
}
static void overloadedMethod(String s) {
 System.out.println("overloadedMethod(String) called");
}
static void overloadedMethod(Integer i) {
 System.out.println("overloadedMethod(Integer) called");
}

static <T> void genericMethod(T t) {
 overloadedMethod(t); // which method is called?
}

public static void main(String[] args) {
 genericMethod("abc");
}

We have several overloaded versions of a method. The overloaded method is invoked by a generic method which passes an argument of type T to
the overloaded method. Eventually the generic method is called and a string is passed as an argument to the generic method. One might expect
that inside the generic method the string version of the overloaded method is invoked, because the method argument is a string. This, however, is
wrong.

The program prints:

overloadedMethod(Object) called

How can this happen? We pass an argument of type String to the overloaded method and yet the version for type Object is called. The reason is
that the compiler creates only one byte code representation per generic type or method and maps all instantiations of the generic type or method to
that one representation.

In our example the generic method is translated to the following representation:

void genericMethod(Object t) {
 overloadedMethod(t);
}

Considering this translation, it should be obvious why the Object version of the overloaded method is invoked. It is entirely irrelevant what type
of object is passed to the generic method and then passed along to the overloaded method. We will always observe a call of the Object version of
the overloaded method.

More generally speaking: overload resolution happens at compile time, that is, the compiler decides which overloaded version must be called. The
compiler does so when the generic method is translated to its unique byte code representation. During that translation type erasure is performed,
which means that type parameters are replaced by their leftmost bound or Object if no bound was specified. Consequently, the leftmost bound or
Object determines which version of an overloaded method is invoked. What type of object is passed to the method at runtime is entirely
irrelevant for overload resolution.

Here is another even more puzzling example.

Example (of invocation of an overloaded method):

public final class GenericClass<T> {

 private void overloadedMethod(Collection<?> o) {
 System.out.println("overloadedMethod(Collection<?>)");

 }
 private void overloadedMethod(List<Number> s) {
 System.out.println("overloadedMethod(List<Number>)");
 }
 private void overloadedMethod(ArrayList<Integer> i) {
 System.out.println("overloadedMethod(ArrayList<Integer>)");
 }

 private void method(List<T> t) {
 overloadedMethod(t); // which method is called?
 }

 public static void main(String[] args) {
 GenericClass<Integer> test = new GenericClass<Integer>();
 test.method(new ArrayList<Integer>());
 }
}

The program prints:

overloadedMethod(Collection<?>)

One might have expected that version for ArrayList<Integer> would be invoked, but that again is the wrong expectation. Let us see what the
compiler translates the generic class to.

Example (after type erasure):

public final class GenericClass {

 private void overloadedMethod(Collection o) {
 System.out.println("overloadedMethod(Collection<?>)");
 }
 private void overloadedMethod(List s) {
 System.out.println("overloadedMethod(List<Number>)");
 }
 private void overloadedMethod(ArrayList i) {
 System.out.println("overloadedMethod(ArrayList<Integer>)");
 }

 private void method(List t) {
 overloadedMethod(t);
 }

 public static void main(String[] args) {
 GenericClass test = new GenericClass();
 test.method(new ArrayList());
 }
}

One might mistakenly believe that the compiler would decide that the List version of the overloaded method is the best match. But that would be
wrong, of course. The List version of the overloaded method was originally a version that takes a List<Number> as an argument, but on
invocation a List<T> is passed, where T can be any type and need not be a Number. Since T can be any type the only viable version of the
overloaded method is the version for Collection<?>.

Conclusion:
Avoid passing type variables to overloaded methods. Or, more precisely, be careful when you pass an argument to an overloaded method whose
type is a type variable or involves a type variable.

LINK TO THIS Practicalities.FAQ050

REFERENCES How does the compiler translate Java generics?
What is type erasure?
What is method overriding?
What is method overloading?
What is a method signature?
What is the @Override annotation?
What are override-equivalent signatures?
When does a method override its supertype's method?
What is overload resolution?

Why doesn't method overriding work as I expect it?

Because the decision regarding overriding vs. overloading is based on the generic type, not on any instantiation thereof.

Sometimes, when you believe you override a method inherited from a supertype you inadvertantly overload instead of override the inherited
method. This can lead to surprising effects. Let us study an example.

Example (of overloading):

class Box<T> {
 private T theThing;
 public Box(T t) { theThing = t; }
 public void reset(T t) { theThing = t; }
 ...
}
class WordBox<S extends CharSequence> extends Box<String> {
 public WordBox(S t) { super(t.toString().toLowerCase()); }
 public void reset(S t) { super.reset(t.toString().toLowerCase()); }
 ...
}
class Test {
 public static void main(String[] args) {
 WordBox<String> city = new WordBox<String>("Skogland");
 city.reset("Stavanger"); // error: ambiguous
 }
}

error: reference to reset is ambiguous,
both method reset(T) in Box<String> and method reset(T) in WordBox<String> match
 city.reset("Stavanger");
 ^

In this example, one might be tempted to believe that the method WordBox<String>.reset(String) overrides the superclass method
Box<String>.reset(String). After all, both methods have the same name and the same parameter types. Methods with the same name and the
same parameter types in a super- and a subtype are usually override-equivalent. For this reason, we might expect that the invocation of the reset
method in the Test class leads to the execution of the WordBox<String>.reset(String) method. Instead, the compiler complains about an
ambiguous method call. Why?

The problem is that the subclass's reset method does not override the superclass's reset method, but overloads it instead. You can easily verify
this by using the @Override annotation.

Example (of overloading):

class Box<T> {
 private T theThing;
 public Box(T t) { theThing = t; }
 public void reset(T t) { theThing = t; }
 ...
}
class WordBox<S extends CharSequence> extends Box<String>{
 public WordBox(S t) { super(t.toString().toLowerCase()); }
@Override
 public void reset(S t) { super.reset(t.toString().toLowerCase()); }
 ...
}

error: method does not override a method from its superclass
 @Override
 ^

When a method is annotated by an @Override annotation, the compiler issues an error message if the annotated method does not override any of
its supertype's methods. If it does not override, then it overloads or hides methods with the same name inherited from its supertype. In our
example the reset method in the generic WordBox<S extends CharSequence> class overloads the reset method in the parameterized
Box<String> class.

The overloading happens because the two methods have different signatures. This might come as a surprise, especially in the case of the
instantation WordBox<String>, where the two reset methods have the same name and the same parameter type.

The point is that the compiler decides whether a subtype method overrides or overloads a supertype method when it compiles the generic subtype,
independently of any instantiations of the generic subtype. When the compiler compiles the declaration of the generic WordBox<S extends
CharSequence> class, then there is no knowledge regarding the concrete type by which the type parameter S might later be replaced. Based on the
declaration of the generic subtype the two reset methods have different signatures, namely reset(String) in the supertype and
reset(S_extends_CharSequence) in the generic subtype. These are two completely different signatures that are not override-equivalent. Hence
the compiler considers them overloading versions of each other.

In a certain instantiation of the subtype, namely in WordBox<String>, the type parameter S might be replaced by the concrete type String. As a
result both reset methods visible in WordBox<String> suddenly have the same argument type. But that does not change the fact that the two
methods still have different signatures and therefore overload rather than override each other.

The identical signatures of the two overloading version of the reset method that are visible in WordBox<String> lead to the anbiguitiy that we
observe in our example. When the reset method is invoked through a reference of type WordBox<String>, then the compiler finds both

overloading versions. Both versions are perfect matches, but neither is better than the other, and the compiler rightly reports an ambiguous method
call.

Conclusion:
Be careful when you override methods, especially when generic types or generic methods are involved. Sometimes the intended overriding turns
out to be considered overloading by the compiler, which leads to surprising and often confusing results. In case of doubt, use the @Override
annotation.

LINK TO THIS Practicalities.FAQ051

REFERENCES How does the compiler translate Java generics?
What is type erasure?
What is method overriding?
What is method overloading?
What is a method signature?
What is the @Override annotation?
When does a method override its supertype's method?
Can a method of a generic subtype override a method of a generic supertype?

Coping With Legacy

What happens when I mix generic and non-generic legacy code?

The compiler issues lots of "unchecked" warnings.

It is permitted that a generic class or method is used in both its parameterized and its raw form. Both forms can be mixed freely. However, all
uses that potentially violate the type-safety are reported by means of an "unchecked warning". In practice, you will see a lot of unchecked
warnings when you use generic types and methods in their raw form.

Example (of mixing paramterized and raw use of a generic type):

interface Comparable<T> {
 int compareTo(T other);
}
class SomeClass implements Comparable {
 public int compareTo(Object other) {
 ...
 }
}
class Test {
 public static void main(String[] args) {
 Comparable x = new SomeClass();
 x.compareTo(x); // "unchecked" warning
 }
}

warning: [unchecked] unchecked call to compareTo(T) as a member of the raw type java.lang.Comparable
 x.compareTo(x);
 ^

The Comparable interface is a generic type. Its raw use in the example above leads to "unchecked" warnings each time the compareTo method is
invoked.

The warning is issued because the method invocation is considered a potential violation of the type-safety guarantee. This particular invocation of
compareTo is not unsafe, but other methods invoked on raw types might be.

Example (of type-safety problem when mixing parameterized and raw use):

class Test {
 public static void someMethod(List list) {
 list.add("xyz"); // "unchecked" warning
 }
 public static void test() {
 List<Long> list = new ArrayList<Long>();
 someMethod(list);
 }
}

warning: [unchecked] unchecked call to add(E) as a member of the raw type java.util.List
 list.add("xyz");
 ^

Similar to the previous example, the invocation of the add method on the raw type List is flagged with an "unchecked" warning. The invocation
is indeed unsafe, because it inserts a string into a list of long values.

The compiler cannot distinguish between invocations that are safe and those that are not. It reports "unchecked" warnings just in case that a call
might be unsafe. It applies a simple rule: every invocation of a method of a raw type that takes an argument of the unknown type that the class's
type parameter stands for, is potentially unsafe. That does not mean, it must be unsafe (see Comparable.compareTo), but it can be unsafe (see
List.add).

If you find that you must intermix legacy and generic code, pay close attention to the unchecked warnings. Think carefully how you can justify the
safety of the code that gives rise to the warning. Once you've made sure the warning is harmless suppress it using the SuppressWarnings
annotation.

If you can re-engineer existing code or if you write new code from scratch you should use generic types and methods in their parmeterized form
and avoid any raw use. For instance, the examples above can be "repaired" as follows:

Example #1 (corrected):

interface Comparable<T> {
 int compareTo(T other);
}
class SomeClass implements Comparable<Object> {
 public int compareTo(Object other) {
 ...
 }
}
class Test {
 public static void main(String[] args) {
 Comparable<Object> x = new SomeClass();
 x.compareTo(x); // fine
 }
}

No "unchecked" warning occurs if the Comparable interface is used in its parameterized form in all places.

Example #2 (corrected):

class Test {
 public static void someMethod(List<String> list) {
 list.add("xyz"); // fine
 }
 public static void test() {
 List<Long> list = new ArrayList<Long>();
 someMethod(list); // error
 }
}

error: someMethod(java.util.List<java.lang.String>) cannot be applied to java.util.List<java.lang.Long>)
 someMethod(list);
 ^

The "unchecked" warning in someMethod is no longer necessary if the generic type List is used in its parameterized form as List<String>. With
this additional type information the compiler is now capable of flagging the formerly undetected type-safety problem in method test as an error.

LINK TO THIS Practicalities.FAQ101

REFERENCES What does type-safety mean?
What is the raw type?
Can I use a raw type like any other type?
What is an "unchecked" warning?
How can I disable or enable unchecked warnings?
What is the SuppressWarnings annotation?

Should I re-engineer all my existing types and generify them?

No, most likely not.

Not all types are inherently generic. There is no point to turning a type into a generic type if the type does not semantically depend on a particular
unknown type that can be more adequately be expressed by means of a type parameter.

Example (of an arbitrary non-generic type taken from package org.w3c.dom):

public interface NameList {
 boolean contains(String str);
 boolean containsNS(String namespaceURI, String name);
 int getLength();
 String getName(int index);
 String getNamespaceURI(int index);
}

The NameList interface takes and returns either strings or primitive types and there is no reason why this class should be generic in any form.

Other non-generic types would benefit from generics.

Example (of another arbitrary non-generic type):

public interface Future {
 boolean cancel(boolean mayInterruptIfRunning);
 Object get();
 Object get(long timeout, TimeUnit unit);
 boolean isCancelled();
 boolean isDone();
}

This interface has get methods that return Object references. If these methods return the same type of object for a given instance of type Future,
then the interface is more precisely declared as a generic interface.

Example (of corresponding generic type):

public interface Future<V> {
 boolean cancel(boolean mayInterruptIfRunning);
 V get();
 V get(long timeout, TimeUnit unit);
 boolean isCancelled();
 boolean isDone();
}

Occasionally, the generification of one type leads to the generification of other related types.

Example (of non-generic types taken from package java.lang.ref in JDK 1.4):

public class ReferenceQueue {
 public ReferenceQueue() { }
 public Reference poll() { ... }
 public Reference remove(long timeout)
 throws IllegalArgumentException, InterruptedException { ... }
 public Reference remove()
 throws InterruptedException { ... }
}
public abstract class Reference {
 private Object referent;
 ReferenceQueue queue;
 Reference next;
 Reference(Object referent) { ... }
 Reference(Object referent, ReferenceQueue queue) { ... }
 public void clear() { ... }
 public boolean enqueue() { ... }
 public Object get() { ... }
 public boolean isEnqueued() { ... }
}

The abstract class Reference internally holds a reference of typeObject and has methods that take and return Object references. If these
methods take and return the same type of object that is held internally, then the class is more precisely declared as a generic class, namely as
Reference<T> where T is the type of the referent.

When we decide to parameterize class Reference then we must provide type arguments in all places where type Reference is used. This affects
class ReferenceQueue because it has methods that return references of type Reference. Consequently, we would declare class ReferenceQueue
as a generic class, too.

Once we have generified class ReferenceQueue then we must return to class Reference and provide type arguments in all places where type
ReferenceQueue is used.

Example (of corresponding generic type in JDK 5.0):

public class ReferenceQueue<T> {
 public ReferenceQueue() { }
 public Reference<? extends T> poll() { ... }
 public Reference<? extends T> remove(long timeout)

 throws IllegalArgumentException, InterruptedException { ... }
 public Reference<? extends T> remove()
 throws InterruptedException { ... }
}
public abstract class Reference<T> {
 private T referent;
 ReferenceQueue<? super T>queue;
 Reference next;
 Reference(T referent) { ... }
 Reference(T referent, ReferenceQueue<? super T> queue) { ... }
 public void clear() { ... }
 public boolean enqueue() { ... }
 public T get() { ... }
 public boolean isEnqueued() { ... }
}

This is an example where a class, namely ReferenceQueue, is turned into a generic class because the types it uses are generic. This propagation
of type parameters into related types is fairly common. For instance, the subtypes of type Reference (namely PhantomReference,
SoftReference, and WeakReference) are generic types as well.

LINK TO THIS Practicalities.FAQ102

REFERENCES How do I generify an existing non-generic class?

How do I generify an existing non-generic type or method?

There are no carved-in-stone rules. It all depends on the intended semantics of the generified type or method.

Modifying an existing type that was non-generic in the past so that it becomes usable as a parameterized type in the future is a non-trivial task.
The generification must not break any existing code that uses the type in its old non-generic form and it must preserve the original non-generic
type's semantic meaning.

For illustration, we study a couple of examples from the collection framework (see package java.util in J2SE 1.4.2 and J2SE 5.0). We
will generify the traditional non-generic interface Collection. From the semantics of a collection it is obvious that for a homogenous collection
of elements of the same type the element type would be the type parameter of a generic Collection interface.

Example (from JDK 1.4; before generification):

interface Collection {
 boolean add (Object o);
 boolean contains(Object o);
 boolean remove (Object o);
 ...
}

These methods take an element as an argument and insert, find or extract the element from the collection. In a generic collection the method
parameters would be of type E, the interface's type parameter.

Example (from JDK 5.0; after generification):

interface Collection<E> {
 boolean add (E o);
 boolean contains(E o);
 boolean remove (E o);
 ...
}

However, this modification does not exactly preserve the semantics of the old class. Before the generification it was possible to pass an arbitrary
type of object to these methods. After the generification only objects of the "right" type are accepted as method arguments.

Example (of modified semantics):

class ClientRepository {
 private Collection<Client> clients = new LinkedList<Client>();
 ...
 boolean isClient(Object c) {
 return clients.contains(c); // error
 }
}

Passing an Object reference to method contains used to be permitted before the generification, but no longer compiles after generification.
Seemingly, our generified type is not semantically compatible with the original non-generic type. A more relaxed generification would look like
this.

Example (from JDK 5.0; after an alternative generification):

http://java.sun.com/j2se/1.4.2/docs/api/java/util/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/package-summary.html

interface Collection<E> {
 boolean add (E o);
 boolean contains(Object o);
 boolean remove (Object o);
 ...
}

Only for the add method now would accept the more restrictive method parameter type E. Since a Collection<E> is supposed to contain only
elements of type E, it is expected and desired that insertion of an alien element is rejected at compile time.

This seemingly trivial example illustrates that decisions regarding a "correct" generification are largely a matter of taste and style. Often, there are
several viable approaches for a generification. Which one is "correct" depends on the specific requirements to and expectations of the semantics of
the resulting generified type.

LINK TO THIS Practicalities.FAQ103

REFERENCES How do I avoid breaking binary compatibility when I generify an existing type or method?

Can I safely generify a supertype, or does it affect all subtypes?

Yes, we can generify non-generic legacy supertypes without affecting the non-generic legacy subtypes - provided the subtype method's
signature is identical to the erasure of the supertype method's signature.

Assume we have a class hierarchy of legacy types and we want to generify the supertype. Must we also generify all the subtypes? Fortunately
not. Let us consider an example.

Example (of a hierarchy of legacy types):

class Box {
 private Object theThing;
 public Box(Object t) { theThing = t; }
 public void reset(Object t) { theThing = t; }
 public Object get() { return theThing; }
 ...
}
class NamedBox extends Box {
 private String theName;
 public NamedBox(Object t,String n) { super(t); theName = n; }
 public void reset(Object t) { super.reset(t); }
 public Object get() { return super.get(); }
 ...
}

Now we decide to generify the supertype.

Example (same as before, but with generified superclass):

class Box<T> {
 private T theThing;
 public Box(T t) { theThing = t; }
 public void reset(T t) { theThing = t; }
 public T get() { return theThing; }
 ...
}
class NamedBox extends Box {
 private String theName;
 public NamedBox(Object t,String n) { super(t); theName = n; }
 public void reset(Object t) { super.reset(t); }
 public Object get() { return super.get(); }
 ...
}

warning: [unchecked] unchecked call to Box(T) as a member of the raw type Box
 public NamedBox(Object t,String n) { super(t); theName = n; }
 ^
warning: [unchecked] unchecked call to reset(T) as a member of the raw type Box
 public void reset(Object t) { super.reset(t); }
 ^

The subclass is still considered a subtype of the now generic supertype where the reset and get method override the corresponding supertype
methods. Inevitably, we now receive unchecked warnings whenever we invoke certain methods of the supertype because we are now using
methods of a raw type. But other than that, the subtype is not affected by the re-engineering of the supertype. This is possible because the
signatures of the subtype methods are identical to the erasures of the signatures of the supertype methods.

Let us consider a slightly different generification. Say, we re-engineer the superclass as follows.

Example (same as before, but with a different generification):

class Box<T> {
 private T theThing;
 public <S extends T> Box(S t) { theThing = t; }
 public <S extends T> void reset(S t) { theThing = t; }
 public T get() { return theThing; }
 ...
}
class NamedBox extends Box {
 private String theName;
 public NamedBox(Object t,String n) { super(t); theName = n; }
 public void reset(Object t) { super.reset(t); }
 public Object get() { return super.get(); }
 ...
}

This time the reset method is a generic method. Does the subtype method reset still override the generic supertype method? The answer is:
yes. The subtype method's signature is still identical to the erasure of the supertype method's signature and for this reason the subtype method is
considered an overriding method. Naturally, we still receive the same unchecked warnings as before, but beyond that there is no need to modify
the subtype although we re-engineered the supertype.

The point to take home is that methods in a legacy subtype can override (generic and non-generic) methods of a generic supertype as long as the
subtype method's signature is identical to the erasure of the supertype method's signature.

LINK TO THIS Practicalities.FAQ103A

REFERENCES Can a method of a non-generic subtype override a method of a generic supertype?
How does the compiler translate Java generics?
What is type erasure?
What is method overriding?
What is a method signature?
What is a subsignature?
What are override-equivalent signatures?
When does a method override its supertype's method?

How do I avoid breaking binary compatibility when I generify an existing type or method?

Sometimes a dummy bound does the trick.

Occasionally, one must pay attention to the fact that a generification might change the signature of some methods in the byte code. Changing the
signature will break existing code that cannot be recompiled and relies on the binary compatibility of the old and new version of the .class file.

Example (before generification, taken from package java.util):

class Collections {
 public static Object max(Collection coll) {...}
 ...
}

The max method finds the largest element in a collection and obviously the declared return type of the method should match the element type of
the collection passed to the method. A conceivable generification could look like this.

Example (after a naive generification):

class Collections {
 public static <T extends Comparable<? super T>>
 T max(Collection<? extends T> coll) {...}
 ...
}

While this generification preserves the semantics of the method, it changes the signature of the max method. It is now a method with return type
Comparable, instead of Object.

Example (after type erasure):

class Collections {
 public static Comparable max(Collection coll) {...}
 ...
}

This will break existing code that relies on the binary compatibility of the .class files. In order to preserve the signature and thus the binary
compatibility, an otherwise superfluous bound can be used.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html#max%28java.util.Collection%29

Example (after binary compatible generification, as available in package java.util):

class Collections {
 public static <T extends Object & Comparable<? super T>>
 T max(Collection<? extends T> coll) {...}
 ...
}

The leftmost bound of the type parameter is now type Object instead of type Comparable, so that the type parameter T is replaced by Object
during type erasure.

Example (after type erasure):

class Collections {
 public static Object max(Collection coll) {...}
 ...
}

Afterthought:

Perhaps you wonder why the hack decribed in this FAQ entry is needed. Indeed, had the Collections.max method been defined as returning a
Comparable in the first place, no further measures, such as adding Object as a type parameter bound, had been required to preserve binary
compatibility. Basically, the declared return type Object is a mistake in the design of this method.

If you carefully study the specification of the Collections.max method's functionality then you realize that all elements of the collection are
required to implement the Comparable interface. Consequently, the returned object is Comparable, too. There is no reason why the method should
return an Object reference.

The only explanation one can think of is that in pre-generic Java there was no way of ensuring by compile-time type checks that the Collection
contains only Comparable objects. However, this was ensured via runtime type checks, namely an explicit downcast in the implementation of the
method. Hence this is not really an excuse for the bug.

Note, that the runtime time type check in the pre-generic version of the Collections.max method still exists in the generic version. The former
explicit cast is now an implicit one generated by the compiler. In the generic version, this cast can never fail (unless there are unchecked
warnings), because the type parameter bound Comparable ensures at compile-time that the elements in the Collection are Comparable.

LINK TO THIS Practicalities.FAQ104

REFERENCES

Defining Generic Types and Methods

Which types should I design as generic types instead of defining them as regular non-generic types?

Types that use supertype references in several places and where there is a correspondence between the occurrences of these supertypre
references.

Not all types are inherently generic, not even the majority of the types in a program is. The question is: which types profit from being generic
types and which ones do not. This FAQ entry tries to sketch out some guidelines.

Obvious candidates for generic types are those types that work closely with existing generic types. For instance, when you derive from a generic
type, such as WeakReference<T>, then the derived class is often generic as well.

Example (of a generic subclass):

class WeakKey<T> extends java.lang.ref.WeakReference<T> {
 private int hash;
 public WeakKey(T ref) { super(t); hash = t.hashcode(); }
 ...
 public int hashcode() { return hash; }
}

The subclass WeakKey can be used in lieu of its superclass WeakReference and therefore is as generic as the superclass is.

Classes that use generic types are sometimes generic as well. For instance, if you want to build a cache abstraction as a map of a key and an
associated value that is refered to by a soft reference, then this new Cache type will naturally be a generic type.

Example (of a generic cache):

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Collections.html#max%28java.util.Collection%29

class Cache<K,V> {
 private HashMap<K,SoftReference<V>> theCache;
 ...
 public V get(K key) { ... }
 public V put(K key, V value) { ... }
 ...
}

The Cache class is built on top of a Map and can be seen as a wrapper around a Map and therefore is as generic as the Map itself.

On the other hand, a cache type need not necessarily be a generic type. If you know that all keys are strings and you do not want to have different
types of caches for different types of cached values, then the Cache type might be a non-generic type, despite of the fact that it works closely with
the generic Map type.

Example (of a non-generic cache):

class Cache {
 private HashMap<String,SoftReference<Object>> theCache;
 ...
 public Object get(String key) { ... }
 public Object put(String key, Object value) { ... }
 ...
}

Both abstractions are perfectly reasonable. The first one is more flexible. It includes the special case of a Cache<String,Object>, which is the
equivalent to the non-generic Cache abstraction. In addition, the generic Cache allows for different cache types. You could have a
Cache<Link,File>, a Cache<CustomerName,CustomerRecord>, and so on. By means of the parameterization you can put a lot more information
into the type of the cache. Other parts of your program can take advantage of the enhanced type information and can do different things for
different types of caches - something that is impossible if you have only one non-generic cache type.

Another indication for a generic type is that a type uses the same supertype in several places. Consider a Triple class. Conceptually, it contains
three elements of the same type. It could be implemented as a non-generic class.

Example (of a non-generic triple):

class Triple {
 privateObject t1, t2, t3;
 public Triple(Object a1, Object a2, Object a3) {
 t1 = a1;
 t2 = a2;
 t3 = a3;
 }
 public void reset(Object a1, Object a2, Object a3) {
 t1 = a1;
 t2 = a2;
 t3 = a3;
 }
 public void setFirst(Object a1) {
 t1 = a1;
 }
 public void setSecond(Object a2) {
 t2 = a2;
 }
 public void setThird(Object a3) {
 t3 = a3;
 }
 public Object getFirst() {
 return a1;
 }
 public Object getSecond() {
 return a2;
 }
 public Object getThird() {
 return a3;
 }
 ...
}

A triple is expected to contain three elements of the same type, like three strings, or three dates, or three integers. It is usually not a triple of
objects of different type, and its constructors enforce these semantics. In addition, a certain triple object will probably contain the same type of
members during its entire lifetime. It will not contain strings today, and integers tomorrow. This, however, is not enforced in the implemention
shown above, perhaps mistakenly so.

The point is that there is a correspondence between the types of the three fields and their type Object does not convey these semantics. This
correspondence - all three fields are of the same type - can be expressed more precisely by a generic type.

Example (of a generic triple):

class Triple<T> {
 private T t1, t2, t3;
 public Triple(T a1, T a2, T a3) {
 t1 = a1;
 t2 = a2;
 t3 = a3;
 }
 public void reset(T a1, T a2, T a) {
 t1 = a1;
 t2 = a2;
 t3 = a3;
 }
 public void setFirst(T a1) {
 t1 = a1;
 }
 public void setSecond(T a2) {
 t2 = a2;
 }
 public void setThird(T a3) {
 t3 = a3;
 }
 public T getFirst() {
 return a1;
 }
 public T getSecond() {
 return a2;
 }
 public T getThird() {
 return a3;
 }
 ...
}

Now we would work with a Triple<String>, saying that all members are strings and will remain strings. We can still permit variations like in a
Triple<Number>, where the members can be of differents number types like Long, Short and Integer, and where a Short member can be
replaced by a Long member or vice versa. We can even use Triple<Object>, where everything goes. The point is that the generification allows
to be more specific and enforces homogenity.

Conclusion:
When a type uses a supertype in several places and there is a correspondence among the difference occurrences, then this is an indication that
perhas the type should be generic.

Note, that the supertype in question need not be Object. The same principle applies to supertypes in general. Consider for instance an abstraction
that uses character sequences in its implementation and refers to them through the supertype CharSequence. Such an abstraction is a candidate for
a generic type.

Example (of a non-generic class using character sequences):

class CharacterStore {
 private CharSequence theChars;
 ...
 public CharacterProcessingClass(CharSequence s) { ... }
 public void set(CharSequence s) { ... }
 public CharSequence get() { ... }
 ...
}

The idea of this abstraction is: whatever the get method receives is stored and later returned by the set method. Again there is a correspondence
between the argument type of the set method, the return type of the get method, and the type of the private field. If they are supposed to be of
the same type then the abstraction could be more precisely expressed as a generic type.

Example (of a generic class using character sequences):

class CharacterStore<C extends CharSequence> {
 private C theChars;
 ...
 public CharacterStore(C s) { ... }
 public void set(C s) { ... }
 public C get() { ... }
 ...
}

This class primarily serves as a store of a character sequence and we can create different types of stores for different types of character sequences,
such as a CharacterStore<String> or a CharacterStore<StringBuilder>.

If, however, the semantics of the class is different, then the class might be better defined as a non-generic type. For instance, the purpose might

be to provide a piece of functionality, such as checking for a suffix, instead of serving as a container. In that case it does not matter what type of
character sequence is used and a generification would not make sense.

Example (of a non-generic class using character sequences):

class SuffixFinder {
private CharSequence theChars;
 ...
 public CharacterProcessingClass(CharSequence s) { ... }
 public boolean hasSuffix(CharSequence suffix) { ... }
}

In this case, the character sequence being examined could be a CharBuffer and the suffix to be searched for could be a StringBuilder, or vice
versa. It would not matter. There is no correspondence implied between the types of the various character sequences being used in this
abstraction. Under these circumstances, the generification does not provide any advantage.

Ultimately, it all depends on the intended semantics, whether a type should be generic or not. Some indicators were illustrated above: a close
relationship to an existing generic type, correspondences among references of the same supertype, the need for distinct types generated from a
generic type, and the need for enhanced type information. In practice, most classes are non-generic, because most classes are defined for one
specific purpose and are used in one specific context. Those classes hardly ever profit from being generic.

LINK TO THIS Practicalities.FAQ201

REFERENCES

Do generics help designing parallel class hierarchies?

Yes.

Some hierarchies of types run in parallel in the sense that a supertype refers to another type and the subtype refers to a subtype of that other type.
Here is an example, where the supertype Habitat refers to Animals and the subtype Aquarium refers to Fish.

Overriding methods in the subtype often have to perform a type checks in this situation, like in the example below.

Example (of parallel type hierarchies leading to dynamic type check):

abstract class Habitat {
 protected Collection theAnimals;
 ...
 public void addInhabitant(Animal animal) {
 theAnimals.add(animal);
 }
}
class Aquarium extends Habitat {
 ...
public void addInhabitant(Animal fish) {
 if (fish instanceof Fish)
 theAnimals.add(fish);
 else
 throw new IllegalArgumentException(fish.toString());
 }
}
Aquarium a = new Aquarium();
a.addInhabitant(new Cat()); // ClassCastException

In order to ensure that the aquarium only contains fish, theaddInhabitant method performs an instanceof test. The test may fail at runtime with
a ClassCastException. It would be nice if the addInhabitant method could be declared as taking a Fish argument; the instanceof test would
be obsolete then. The problem is that aaddInhabitant(Fish) method in the Aquarium class would be an overloading version of the Habitat's
addInhabitant(Animal) method rather than an overriding version thereof and this is neither intended nor corrct. Hence, we cannot get rid of the
instanceof test - unless we consider generics.

This kind of type relationship among parallel type hierarchies can be more elegantly expressed by means of generics. If the supertype Habitat
were a generic type, then the subtype Aquarium would no longer need the type check. Here is a re-engineered version of the example above.

Example (same as above, re-engineered using generics):

abstract class Habitat<A extends Animal> {
 protected Collection<A> theAnimals;
 ...
 public void addInhabitant(A animal) {
 theAnimals.add(animal);
}
class Aquarium extends Habitat<Fish> {
 ...
public void addInhabitant(Fish fish) {
 // no test necessary
 theAnimals.add(fish);
 }
}

Aquarium a = new Aquarium();
a.addInhabitant(new Cat()); // error: illegal argument type

When the supertype is generic, then the subtype can derive from a certain instantiation of the supertype. The advantage is that overriding methods
in the subtype can now be declared to take the intended type of argument rather than a supertype argument. In the example, the Aquarium is a
Habitat<Fish>, which means that the addInhabitant method now takes a Fish argument instead of an Animal argument. This way, the
instanceof test is no longer necessary and any attempt to add a non-Fish to the Aquarium will be detected at compile-time already.

Note, that the generic version of the type hierarchy has further advantages.

Example (of parallel type hierarchies):

abstract class Habitat {
 protected Collection theAnimals;
 ...
 public Habitat(Collection animals) {
 theAnimals = animals;
 }
}
class Aquarium extends Habitat {
 ...
 public Aquarium(Collection fish) {
 // no type check possible
 super(fish);
 }
}

ArrayList animals = new ArrayList();
animals.add(new Cat());
Aquarium a = new Aquarium(animals); // no error or exception here

In the Aquarium constructor there is no way to check whether the collection contains Fish or not. Compare this to the generic solution.

Example (of parallel type hierarchies using generics):

abstract class Habitat<A extends Animal> {
 protected Collection<A> theAnimals;
 ...
 public Habitat(Collection<A> animals) {
 theAnimals = animals;
 }
}
class Aquarium extends Habitat<Fish> {
 ...
 public Aquarium(Collection<Fish> fish) {
 // no type check necessary
 super(fish);
 }
}

ArrayList<Animal> animals = new ArrayList<Animal>();
animals.add(new Cat());
Aquarium a = new Aquarium(animals); // error: illegal argument type

In this generic version of the type hierarchy, the Aquarium constructor requires a Collection<Fish> as a constructor argument and this collection
of fish can be passed along to the supertype's constructor because Aquarium extends the supertype's instantiation Habitat<Fish> whose
constructor requires exactly that type of collection.

Conclusion: Type hierarchies that run in parallel are more easily and more reliably implemented by means of generics.

LINK TO THIS Practicalities.FAQ201A

REFERENCES
What is method overriding?
What is method overloading?

When would I use an unbounded wildcard parameterized type instead of a bounded wildcard or concrete parameterized type?

When you need a reifiable type.

Occasionally, an unbounded wildcard parameterized type is used because it is a so-called reifiable type and can be used in situations where non-
refiable types are not permitted.

One of these situations are type checks (i.e., cast or instanceof expressions). Non-reifiable types (i.e., concrete or bounded wildcard
parameterized type) are not permitted as the target type of a type check or lead to "unchecked" warnings.
Another situation is the use of arrays. Non-reifiable types (i.e., concrete or bounded wildcard parameterized type) are not permitted as the
component type of an array.

Depending on the situation, the unbounded wildcard parameterized type can substitute a concrete or bounded wildcard parameterized type in a
type check or an array in order to avoid errors or warning.

Non-reifiable types (i.e., concrete or bounded wildcard parameterized type) are not permitted as the target type of a type check or lead to
"unchecked" warnings. A typical situation, in shich such a cast would be needed, is the implementation of methods such as the equals method,
that take Object reference and where a cast down to the actual type must be performed.

Example (not recommended):

class Triple<T> {
 private T fst, snd, trd;
 ...
 public boolean equals(Object other) {
 ...
 Triple<T> otherTriple = (Triple<T>)other; // warning; unchecked cast
 return (this.fst.equals(otherTriple.fst)
 && this.snd.equals(otherTriple.snd)
 && this.trd.equals(otherTriple.trd));
 }
}

When we replace the cast to Triple<T> by a cast to Triple<?> the warning disappears, because unbounded wildcard parameterized type are
permitted as target type of a cast without any warnings.

Example (implementation of equals):

class Triple<T> {
 private T fst, snd, trd;
 ...
 public boolean equals(Object other) {
 ...
 Triple<?> otherTriple = (Triple<?>)other;
 return (this.fst.equals(otherTriple.fst)
 && this.snd.equals(otherTriple.snd)
 && this.trd.equals(otherTriple.trd));
 }
}

Note, that replacing the concrete parameterized type by the wildcard parameterized type works in this example only because we need no write
access to the fields of the referenced object referred and we need not invoke any methods. Remember, use of the object that a wildcard reference
variable refers to is restricted. In other situations, use of a wildcard parameterized type might not be a viable solution, because full access to the
referenced object is needed. (Such a situation can arise, for instance, when you implement the clone method of a generic class.)

Non-reifiable types (i.e., concrete or bounded wildcard parameterized type) are not permitted as the component type of an array. Here is an
example:

Example (of illegal array type):

static void test() {
 Pair<Integer,Integer>[] arr = new Pair<Integer,Integer>[10]; // error
 arr[0] = new Pair<Integer,Integer>(0,0);
 arr[1] = new Pair<String,String>("",""); // would fail with ArrayStoreException

 Pair<Integer,Integer> pair = arr[0];
 Integer i = pair.getFirst();
 pair.setSecond(i);
}

The concrete parameterized type Pair<Integer,Integer> is illegal. As a workaround one might consider using an array of the corresponding
unbounded wildcard parameterized type.

Example (of array of unbounded wildcard parameterized type):

static void test() {
 Pair<?,?>[] arr = new Pair<?,?>[10];
 arr[0] = new Pair<Integer,Integer>(0,0);
 arr[1] = new Pair<String,String>("",""); // succeeds

 Pair<Integer,Integer> pair1 = arr[0]; // error
 Pair<?,?> pair2 = arr[0]; // ok

 Integer i = pair2.getFirst(); // error
 Object o = pair2.getFirst(); // ok

 pair2.setSecond(i); // error
}

However, a Pair<?,?>[] is semantically different from the illegal Pair<Integer,Integer>[]. It is not homogenous, but contains a mix of
arbitrary pair types. The compiler does not and cannot prevent that they contain different instantiations of the generic type. In the example, I can
insert a pair of strings into what was initially supposed to be a pair of integers.

When we retrieve elements from the array we receive references of type Pair<?,?>. This is demonstrated in our example: we cannot assign the
Pair<?,?> taken from the array to the more specific Pair<Integer,Integer>, that we really wanted to use.

Various operations on the Pair<?,?> are rejected as errors, because the wildcard type does not give access to all operations of the referenced
object. In our example, invocation of the set-methods is rejected with error messages.

Depending on the situation, an array of a wildcard parameterized type may be a viable alternative to the illegal array of a concrete (or bounded
wildcard) parameterized type. If full access to the referenced element is needed, this approach does not work and a better solution would be use of
a collection instead of an array.

LINK TO THIS Practicalities.FAQ202

REFERENCES What is a reifiable type?
How can I avoid "unchecked cast" warnings?
How can I work around the restriction that there are no arrays whose component type is a concrete parameterized type?

When would I use a wildcard parameterized type instead of a concrete parameterized type?

Whenever you need the supertype of all or some instantiations of a generic type.

There are two typical situations in which wildcard parameterized types are used because they act as supertype of all instantiations of a given
generic type:

relaxing a method signature to allow a broader range of argument or return types
denoting a mix of instantiations of the same generic type

Details are discussed in the FAQ entries Practicalities.FAQ301 and Practicalities.FAQ006 listed in the reference section below.

LINK TO THIS Practicalities.FAQ203

REFERENCES Which role do wildcards play in method signatures?
How do I express a mixed sequence of instantiations of a given generic type?

When would I use a wildcard parameterized type with a lower bound?

When a concrete parmeterized type would be too restrictive.

Consider a class hierarchy where a the topmost superclass implements an instantiation of the generic Comparable interface.

Example:

class Person implements Comparable<Person> {
 ...
}
class Student extends Person {
 ...
}

Note, the Student class does not and cannot implement Comparable<Student>, because it would be a subtype of two different instantiations of
the same generic type then, and that is illegal (details here).

Consider also a method that tries to sort a sequence of subtype objects, such as a List<Student>.

Example:

class Utilities {
 public static <T extends Comparable<T>> void sort(List<T> list) {
 ...
 }
 ...
}

This sort method cannot be applied to a list of students.

Example:

List<Student> list = new ArrayList<Student>();
...
Utilities.sort(list); // error

The reason for the error message is that the compiler infers the type parameter of the sort method as T:=Student and that class Student is not
Comparable<Student>. It is Comparable<Person>, but that does not meet the requirements imposed by the bound of the type parameter of method
sort. It is required that T (i.e. Student) is Comparable<T> (i.e. Comparable<Student>), which in fact it is not.

In order to make the sort method applicable to a list of subtypes we would have to use a wildcard with a lower bound, like in the re-engineered
version of the sort method below.

Example:

class Utilities {
 public static <T extends Comparable<? super T>> void sort(List<T> list) {
 ...
 }
 ...
}

Now, we can sort a list of students, because students are comparable to a supertype of Student, namely Person.

LINK TO THIS Practicalities.FAQ204

REFERENCES Can a subclass implement another instantiation of a generic interface than any of its superclasses does?

How do I recover the actual type of the this object in a class hierarchy?

With a getThis() helper method that returns the this object via a reference of the exact type.

Sometimes we need to define a hierarchy of classes whose root class has a field of a super type and is supposed to refer to different subtypes
in each of the subclasses that inherit the field. Here is an example of such a situation. It is a generic Node class.

Example (of a class with a type mismatch - does not compile):

public abstract class Node <N extends Node<N>> {
 private final List<N> children = new ArrayList<N>();
 private final N parent;

 protected Node(N parent) {
 this.parent = parent;
 parent.children.add(this); // error: incompatible types
 }
 public N getParent() {
 return parent;
 }
 public List<N> getChildren() {
 return children;
 }
 }

public class SpecialNode extends Node<SpecialNode> {
 public SpecialNode(SpecialNode parent) {
 super(parent);
 }
}

The idea of this class design is: in the subclass SpecialNode the list of children will contain SpecialNode objects and in another subclass of
Node the child list will contain that other subtype of Node. Each node adds itself to the child list at construction time. The debatable aspect in
the design is the attempt to achieve this addition to the child list in the superclass constructor so that the subclass constructors can simply
invoke the superclass constructor and thereby ensure the addition of this node to the child list.

The class designer overlooked that in the Node superclass the child list is of type List<N>, where N is a subtype of Node. Note, that the list is
NOT of type List<Node>. When in the superclass constructor the this object is added to the child list the compiler detects a type mismatch
and issues an error message. This is because the this object is of type Node, but the child list is declared to contain objects of type N, which
is an unknown subtype of Node.

There are at least three different ways of solving the problem.

Declare the child list as a List<Node> and add the this object in the superclass constructor.
Declare the child list as a List<N> and add the this object in the subclass constructor.
Declare the child list as a List<N>, recover the this object's actual type, and add the this object in the superclass constructor.

Below you find the source code for each of these solutions.

Declare the child list as a List<Node> and add the this object in the superclass constructor.

If we want to add each node to the child list in the superclass constructor then we need to declare the child list as a List<Node>, because in
the superclass constructor the this object is of type Node. The Node superclass is supposed to be used in a way that the Node reference will
refer to an object of type N, but this is just a convention and not reflected in the types being used. Type-wise the this object is just a Node -
at least in the context of the superclass.

Example (problem solved using a list of supertypes):

public abstract class Node <N extends Node<N>> {
 private final List<Node<?>> children = new ArrayList<Node<?>>();
 private final N parent;

 protected Node(N parent) {
 this.parent = parent;
 parent.children.add(this); // fine
 }
 public N getParent() {
 return parent;
 }
 public List<Node<?>> getChildren() {
 return children;
 }
 }

public class SpecialNode extends Node<SpecialNode> {
 public SpecialNode(SpecialNode parent) {
 super(parent);
 }
}

Declare the child list as a List<N> and add the this object in the subclass constructor.

Our type mismatch problem would be solved if refrained from adding the this object in the superclass constructor, but defer its addition to
the subclass constructor instead. In the context of the subclass constructor the exact type of the this object is known and there would be no
type mismatch any longer.

Example (problem solved by adding the this object in the subtype constructor):

public abstract class Node <N extends Node<N>> {
 protected final List<N> children = new ArrayList<N>();
 private final N parent;

 protected Node(N parent) {
 this.parent = parent;
 }
 public N getParent() {
 return parent;
 }
 public List<N> getChildren() {
 return children;
 }
 }

public class SpecialNode extends Node<SpecialNode> {
 public SpecialNode(SpecialNode parent) {
 super(parent);
 parent.children.add(this); // fine
 }
}

Declare the child list as a List<N>, recover the this object's actual type, and add the this object in the superclass constructor.

The problem can alternatively be solved by means of an abstract helper method that each of the subclasses implements. The purpose of the
helper method is recovering the this object's actual type.

Example (problem solved by recovering the this object's actual type):

public abstract class Node <N extends Node<N>> {
 private final List<N> children = new ArrayList<N>();
 private final N parent;

 protected abstract N getThis();

 protected Node(N parent) {
 this.parent = parent;
 parent.children.add(getThis()); // fine
 }
 public N getParent() {
 return parent;
 }
 public List<N> getChildren() {
 return children;
 }
 }

public class SpecialNode extends Node<SpecialNode> {
 public SpecialNode(SpecialNode parent) {
 super(parent);
 }
 protected SpecialNode getThis() {
 return this;
 }
}

We added an abstract helper method getThis() that returns the this object with its exact type information. Each implementation of the
getThis() method in one of the Node subtypes returns an object of the specific subtype N.

Usually, one would try to recover type information by means of a cast, but in this case the target type of the cast would be the unknown type
N. Following this line of logic one might have tried this unsafe solution:

Example (problem solved by recovering the this object's actual type - not recommended):

public abstract class Node <N extends Node<N>> {
 ...
 protected Node(N parent) {
 this.parent = parent;
 parent.children.add((N)this); // warning: unchecked cast
 }
 ...
 }

Casts whose target type is a type parameter cannot be verified at runtime and lead to an unchecked warning. This unsafe cast introduces the
potential for unexpected ClassCastExceptions and is best avoided. The exact type information of the object refered to by the this reference
is best recovered by means of overriding a getThis() helper method.

LINK TO THIS Practicalities.FAQ205

REFERENCES What is the "getThis" trick?

What is the "getThis" trick?

A way to recover the type of the this object in a class hierarchy.

The "getThis trick" was first published by Heinz Kabutz in Issue 123 of his Java Specialists' Newsletter in March 2006 and later appeared in the
book Java Generics and Collections by Maurice Naftalin and Philp Wadler, who coined the term "getThis" trick. It is a way to recover the type of
the this object - a recovery of type information that is sometimes needed in class hierachies with a self-referential generic supertype.

Examples of self-referential generic types are

abstract class Enum<E extends Enum<E>> in the java.lang package of the JDK, or
abstract class Node <N extends Node<N>> from entry FAQ205 above, or
abstract class TaxPayer<P extends TaxPayer<P>> in the original example discussed by Heinz Kabutz.

Self-referential generic types are often - though not necessarily - used to express in a supertype that its subtypes depend on themselves. For

http://www.javaspecialists.co.za/archive/newsletter.do?issue=123
http://safari.oreilly.com/0596527756/javagenerics-CHP-9-SECT-4

instance, all enumeration types are subtypes of class Enum. The idea is that an enumeration type Color extends Enum<Color>, an enumeration type
TimeUnit extends Enum<TimeUnit>, and so on. Similarly in the example discussed in entry FAQ205: each node type extends class Node
parameterized on its own type, e.g. class SpecialNode extends Node<SpecialNode>. Heinz Kabutz's example uses the same idea: there is a class
Employee that extends TaxPayer<Employee> and a class Company that extends TaxPayer<Company>.

Let us consider an arbitrary self-referential generic type SelfReferentialType<T extends SelfReferentialType<T>>. In its implementation it
may be necessary to pass the this reference to a method that expects an argument of type T, the type parameter. The attempt results is a compile-
time error message, as illustrated below:

public abstract class SelfReferentialType<T extends SelfReferentialType<T>> {
 private SomeOtherType<T> ref;
 public void aMethod() { ref.m(this); } // error: incompatible types
}
public interface SomeOtherType<E> {
 void m(E arg);
}

The problem is that the this reference is of type SelfReferentialType<T>, while the method m expects an argument of type T, which is a subtype
of type SelfReferentialType<T>. Since we must not supply supertype objects where subtype objects are asked for, the compiler rightly
complains. Hence the compiler is right.

However, we as developers know that conceptually all subtypes of type SelfReferentialType are subtypes of type SelfReferentialType
parameterized on their own type. As a result, the type of the this reference is the type that the type parameter T stands for. This is illustrated
below:

public class Subtype extends SelfReferentialType<Subtype> { ... }

When the inherited aMethod is invoked on a Subtype object, then the this reference refers to an object of type Subtype and a Method expects a
argument of type T:=Subtype. This perfect match is true for all subtypes. Consequently, we wished that the compiler would accept the method
invocation as is. Naturally, the compiler does not share our knowlege regarding the intended structure of the class hierarchy and there are no
language means to express that each Subtype extends SelfReferentialType<Subtype>. Hence we need a work-around - and this is what the
"getThis" trick provides.

The "getThis" trick provides a way to recover the exact type of the this reference. It involves an abstract method in the self-referential supertype
that all subtypes must override. The method is typically named getThis. The intended implementation of the method in the subtype is getThis()
{ return this; }, as illustrated below:

public abstract class SelfReferentialType<T extends SelfReferentialType<T>> {
 private SomeOtherType<T> ref;
 protected abstract T getThis();
 public void aMethod() { ref.m(getThis()); } // fine
}
public interface SomeOtherType<E> {
 void m(E arg);
}
public class Subtype extends SelfReferentialType<Subtype> {
 protected Subtype getThis() { return this; }
}

As we discussed in entry FAQ205, the "getThis" trick is not the only conceivable work-around.

LINK TO THIS Practicalities.FAQ206

REFERENCES How do I recover the actual type of the this object in a class hierarchy?

How do I recover the element type of a container?

By having the container carry the element type as a type token.

Suppose that you are defining a pair of related interfaces which need to be implemented in pairs:

Example (of a pair of related interfaces):

interface Contained {}

interface Container<T extends Contained> {
 void add(T element);
 List<T> elements();
}

Example (of implementations of the related interfaces):

class MyContained implements Contained {
 private final String name;
 public MyContained(String name) {this.name = name;}
 public @Override String toString() {return name;}

}
class MyContainer implements Container<MyContained> {
 private final List<MyContained> _elements = new ArrayList<MyContained>();
 public void add(MyContained element) {_elements.add(element);}
 public List<MyContained> elements() {return _elements;}
}

Given these interfaces you need to write generic code which works on any instance of these interfaces.

Example (of generic code using the pair of interfaces):

class MetaContainer {
 private Container<? extends Contained> container;
 public void setContainer(Container<? extends Contained> container) {
 this.container = container;
 }
 public void add(Contained element) {
 container.add(element); // error
 }
 public List<? extends Contained> elements() {return container.elements();}
}

error: add(capture#143 of ? extends Contained) in Container<capture#143 of ? extends Contained> cannot be
applied to Contained)
 container.add(element);
 ^

The MetaContainer needs to handle an unknown parameterization of the generic Container class. For this reason it holds a reference of type
Container<? extends Contained>. Problems arise when the container's add() method is invoked. Since the container's type is a wildcard
parameterization of class Container the compiler does not know the container's exact type and cannot check whether the type of the element to be
added is acceptable and the element can safely be added to the container. As the compiler cannot ensure type safety, it issues an error message.
The problem is not at all surprising: wildcard parameterizations give only restricted access to the concrete parameterization they refer to (see entry
GenericTypes.FAQ304 for details).

In order to solve the problem, we would have to retrieve the container's exact type and in particular its element type. However, this is not possible
statically at compile-time. A viable work-around is adding to the Container class a method that returns a type token that represents the
container's element type so that we can retrieve the element type dynamically at run-time.

Example (of container with element type):

interface Container<T extends Contained> {
 void add(T element);
 List<T> elements();
 Class<T> getElementType();
}

class MyContainer implements Container<MyContained> {
 private final List<MyContained> _elements = new ArrayList<MyContained>();
 public void add(MyContained element) {_elements.add(element);}
 public List<MyContained> elements() {return _elements;}
 public Class<MyContained> getElementType() {return MyContained.class;}
}

The MetaContainer can then retrieve the element type from the container by means of the container's getElementType() method..

Example (first attempt of re-engineering the meta container):

class MetaContainer {
 private Container<? extends Contained> container;
 public void setContainer(Container<? extends Contained> container) {
 this.container = container;
 }
 public void add(Contained element) {
 container.add(container.getElementType().cast(element)); // error
 }
 public List<? extends Contained> elements() {return container.elements();}
}

error: add(capture#840 of ? extends Contained) in Container<capture#840 of ? extends Contained> cannot be
applied to (Contained)
 container.add(container.getElementType().cast(element));
 ^

Unfortunately the container is still of a type that is a wildcard parameterization and we still suffer from the restrictions that wildcard
parameterizations come with: we still cannot invoke the container's add() method. However, there is a common technique for working around this
kind of restriction: using a generic helper method (see Practicalities.FAQ304 for details).

Example (successfully re-engineered meta container):

class MetaContainer {
 private Container<? extends Contained> container;
 public void setContainer(Container<? extends Contained> container) {
 this.container = container;
 }
 public void add(Contained element) {
 _add(container, element);
 }
 private static <T extends Contained> void _add(Container<T> container, Contained element){
 container.add(container.getElementType().cast(element));
 }
 public List<? extends Contained> elements() {return container.elements();}
}

This programming technique relies on the fact that the compiler performs type argument inference when a generic method is invoked (see
Technicalities.FAQ401 for details). It means that the type of the container argument in the helper method _add() is not a wildcard parameterization, but
a concrete parameterization for an unknown type that the compiler infers when the method is invoked. The key point is that the container is no
longer of a wildcard type and we may eventually invoke its add() method.

LINK TO THIS Practicalities.FAQ207

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard parameterized type?
How do I implement a method that takes a wildcard argument?
What is the capture of a wildcard?
What is type argument inference?

What is the "getTypeArgument" trick?

A technique for recovering the type argument from a wildcard parameterized type at run-time.

A reference of a wildcard type typically refers to a concrete parameterization of the corresponding generic type, e.g. a List<?> refers to a
LinkedList<String>. Yet it is impossible to retrieve the concrete parameterization's type argument from the wildcard type. The
"getTypeArgument" trick solves this problem and enables you to retrieve the type argument dynamically at run-time. The previous FAQ entry
demonstrates an application of this technique (see Practicalities.FAQ207).

Consider a generic interface and a type that implements the interface.

Example (of generic interface and implementing class):

interface GenericType<T> {
 void method(T arg);
}
class ConcreteType implements GenericType<TypeArgument> {
 public void method(TypeArgument arg) {...}
}

Note that the interface has a method that takes the type variable as an argument.

When you later use a wildcard parameterization of the generic interface and need to invoke a method that takes the type variable as an argument,
the compiler will complain. This is because wildcard parameterizations do not give full access to all methods (see entry GenericTypes.FAQ304 for
details).

Example (of using a wildcard parameterization of the generic interface):

class GenericUsage {
 private GenericType<?> reference;
 public void method(Object arg) {
 reference.method(arg); // error
 }
}

error: method(capture#143 of ? extends TypeArgument) in GenericType<capture#143 of ? extends TypeArgument>
cannot be applied to TypeArgument)
 reference.method(arg);
 ^

In order to solve the problem, you add a method to the implementation of the generic interface that return a type token . The type token represents
the type argument of the parameterization of the generic interface that the class implements. This way you can later retrieve the type argument
dynamically at run-time.

Example (of container with element type):

interface GenericType<T> {
 void method(T arg);
 Class<T> getTypeArgument();
}

class ConcreteType implements GenericType<TypeArgument> {
 public void method(TypeArgument arg) {...}
 public Class<TypeArgument> getTypeArgument() {return TypeArgument.class;}
}

Using the getTypeArgument() method you can then retrieve the type argument even from a wildcard parameterization.

Example (of retrieving the type argument via the "getTypeArgument" trick):

class GenericUsage {
 private GenericType<?> reference;
 public void method(Object arg) {
 _helper(reference, arg);
 }
 private static <T> void _helper(GenericType<T> reference, Object arg){
 reference.method(reference.getTypeArgument().cast(arg));
 }
}

Note that the generic helper method _helper() is needed because otherwise the interface's method would still be invoked through a reference of a
wildcard type and you would still suffer from the restrictions that wildcard parameterizations come with. Using a generic helper method is a
common technique for working around this kind of restriction (see Practicalities.FAQ304 for details).

The work-around relies on the fact that the compiler performs type argument inference when a generic method is invoked (see Technicalities.FAQ401 for
details). It means that the type of the reference argument in the helper method is not a wildcard parameterization, but a concrete parameterization
for an unknown type that the compiler infers when the method is invoked. The key point is that the reference is no longer of a wildcard type and
we may eventually invoke its method.

The key point of the "getTypeArgument" trick is making available the type argument as a type token (typically by providing a method such as
getTypeArgument()) so that you can retrieve the type argument at run-time even in situations where the static type information does not provide
information about the type argument.

LINK TO THIS Practicalities.FAQ208

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard parameterized type?
How do I implement a method that takes a wildcard argument?
What is the capture of a wildcard?
What is type argument inference?
How do I recover the element type of a container?

Designing Generic Methods

Why does the compiler sometimes issue an unchecked warning when I invoke a "varargs" method?

Because you pass in a variable argument list of reifiable types.

When you invoke a method with a variable argument list (also called varargs) you will occasionally find that the compiler issues an unchecked
warning. Here is an example:

Example (of a varargs method and its invocation):

public static <E> void addAll(List<E> list, E... array) {
 for (E element : array) list.add(element);
}

public static void main(String[] args) {
 addAll(new ArrayList<String>(), // fine
 "Leonardo da Vinci",
 "Vasco de Gama"
);
 addAll(new ArrayList<Pair<String,String>>(), // unchecked warning
 new Pair<String,String>("Leonardo","da Vinci"),
 new Pair<String,String>("Vasco","de Gama")
);
}

warning: [unchecked] unchecked generic array creation of type Pair<String,String>[] for varargs parameter
 addAll(new ArrayList<Pair<String,String>>(),
 ^

The first invocation is fine, but the second invocation is flagged with an unchecked warning. This warning is confusing because there is no array
creation expression anywhere in the source code. In order to understand, what the compiler complains about you need to keep in mind two things:

Variable argument lists are translated by the compiler into an array.
Creation of arrays with a non-reifiable component type is not permitted.

In the example above the compiler translates the varargs parameter in the method definition into an array parameter. Basically the method
declaration is translated to the following:

Example (of varargs method after translation):

public static <E> void addAll(List<E> list, E[] array) {
 for (E element : array) list.add(element);
}

When the method is invoked, the compiler automatically takes the variable number of arguments, creates an array into which it stuffs the
arguments, and passes the array to the method. The method invocations in the example above are translated to the following:

Example (of invocation of varargs method after translation):

public static void main(String[] args) {
 addAll(new ArrayList<String>(), // fine
 new String[] {
 "Leonardo da Vinci",
 "Vasco de Gama"
 }
);
 addAll(new ArrayList<Pair<String,String>>(), // unchecked warning
 new Pair<String,String>[] {
 new Pair<String,String>("Leonardo","da Vinci"),
 new Pair<String,String>("Vasco","de Gama")
 }
);
}

As you can see, the compiler creates a String[] for the first invocation and a Pair<String,String>[] for the second invocation. Creating a is
String[] is fine, but creating a Pair<String,String>[] is not permitted. Pair<String,String> is not a reifiable type, that is, it loses
information as a result of type erasure and is at runtime represented as the raw type Pair instead of the exact type Pair<String,String>. The
loss of information leads to problems with arrays of such non-reifiable component types. The reasons are illustrated in FAQ entry
ParameterizedTypes.FAQ104; as usual it has to do with type safety issues.

If you were trying to create such an array of type Pair<String,String>[] yourself, the compiler would reject the new-expression with an error
message. But since it is the compiler itself that creates such a forbidden array, it chooses to do so despite of the type safety issues and gives you
an unchecked warning to alert you to potential safety hazards.

You might wonder why the unchecked warning is needed and what peril it tries to warn about. The example above is perfectly type-safe, because
in the method implementation the array is only read and nothing is stored in the array. However, if a method would store something in the array it
could attempt to store an alien object in the array, like putting a Pair<Long,Long> into a Pair<String,String>[]. Neither the compiler nor the
runtime system could prevent it.

Example (of corrupting the implicitly created varargs array; not recommended):

Pair<String,String>[] method(Pair<String,String>... lists) {
 Object[] objs = lists;
 objs[0] = new Pair<String,String>("x","y");
 objs[1] = new Pair<Long,Long>(0L,0L); // corruption !!!
 return lists;
}
public static void main(String[] args) {
 Pair<String,String>[] result
 = method(new Pair<String,String>("Vasco","da Gama"), // unchecked warning
 new Pair<String,String>("Leonard","da Vinci"));
 for (Pair<String,String> p : result) {
 String s = p.getFirst(); // ClassCastException
 }
}

The implicitly created array of String pairs is accessed through a reference variable of type Object[]. This way anything can be stored in the
array; neither the compiler nor the runtime system can prevent that a Pair<Long,Long> is stored in the array of Pair<String,String>. What the
compiler can do is warning you when the implicit varargs array is created. If you ignore the warning you will get an unexpected
ClassCastException later at runtime.

Here is another example that illustrates the potential danger of ignoring the warning issued regarding array construction in conjunction with
variable argument lists.

Example (of a varargs method and its invocation):

public final class Test {
 static <T> T[] method_1(T t1, T t2) {
 return method_2(t1, t2); // unchecked warning
 }
 static <T> T[] method_2(T... args) {
 return args;
 }
 public static void main(String... args) {
 String[] strings = method_1("bad", "karma"); // ClassCastException
 }
}

warning: [unchecked] unchecked generic array creation of type T[] for varargs parameter
 return method_2(t1, t2);
 ^

In this example the first method calls a second method and the second method takes a variable argument list. In order to invoke the varargs
method the compiler creates an array and passes it to the method. In this example the array to be created is an array of type T[], that is, an array
whose component type is a type parameter. Creation of such arrays is prohibited in Java and you would receive an error message if you tried to
create such an array yourself; see TypeParameters.FAQ202 for details.

As in the previous example, the array's component type is non-reifiable and due to type erasure the compiler does not create a T[], but an
Object[] instead. Here is what the compiler generates:

Example (same a above, after translation by type erasure):

public final class Test {
 static Object[] method_1(Object t1, Object t2) {
 return method_2(new Object[] {t1, t2}); // unchecked warning
 }
 static Object[] method_2(Object[] args) {
 return args;
 }
 public static void main(String[] args) {
 String[] strings = (String[])method_1("bad", "karma"); // ClassCastException
 }
}

The unchecked warning is issued to alert you to the potential risk of type safety violations and unexpected ClassCastExceptions. In the example,
you would observe a ClassCastException in the main() method where two strings are passed to the first method. At runtime, the two strings are
stuffed into an Object[]; note, not a String[]. The second method accepts the Object[]as an argument, because after type erasure Object[] is
its declared parameter type. Consequently, the second method returns an Object[], not a String[], which is passed along as the first method's
return value. Eventually, the compiler-generated cast in the main() method fails, because the return value of the first method is an Object[] and
no String[].

Again, the problem is that calling the varargs method requires creation of a array with a non-reifiable component type. In the first example, the
array in question was a Pair<String,String>[]; in the second example, it was a T[]. Both are prohibited in Java because they can lead to type
safety problems.

Conclusion: It is probably best to avoid providing objects of non-reifiable types where a variable argument list is expected. You will always
receive an unchecked warning and unless you know exactly what the invoked method does you can never be sure that the invocation is type-safe.

LINK TO THIS Practicalities.FAQ300

REFERENCES What does type-safety mean?
What is a reifiable type?
Can I create an array whose component type is a concrete parameterized type?
Can I create an array whose component type is a wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parmeterized type?
Can I create an array whose component type is a type parameter?

What is a "varargs" warning?

A warning that the compiler issues for the definition of certain methods with a variable argument list.

Certain methods with a variable arguments list (called a varargs method) lead to unchecked warnings when they are invoked. This can occur if
the declared type of the variable argument is non-reifiable, e.g. if it is a parameterized type or a type variable. Since Java 7 the compiler does not
only give an unchecked warning when such a method is invoked, but also issues a warning for the definition of such a method. In order to
distinguish between the warning issued for the definition of a debatable varargs method and the warning issued at the call site of such a method
we will refer to the warning at the definition site as a varargs warning.

Here is an example:

Example (of a varargs warning):

public static <E> void addAll(List<E> list, E... array) { // varargs warning
 for (E element : array) list.add(element);
}

public static void main(String[] args) {
 addAll(new ArrayList<Pair<String,String>>(), // unchecked warning
 new Pair<String,String>("Leonardo","da Vinci"),
 new Pair<String,String>("Vasco","de Gama")
);
}

warning: [unchecked] Possible heap pollution from parameterized vararg type E
 public static <E> void addAll(List<E> list, E... array) {
 ^
warning: [unchecked] unchecked generic array creation for varargs parameter of type Pair<String,String>[]
 addAll(new ArrayList<Pair<String,String>>(),
 ^

The addAll() method has a variable argument list E.... The type of the variable argument is E which is a type variable. When the addAll()
method is invoked then the type variable E is replaced by the parameterized type Pair<String,String> in the example above, which leads to an
unchecked warning. The details regarding this unchecked warning are explained in Practicalities.FAQ300.

In order to alert the provider of the addAll() method (rather than its caller) to the trouble the method might later cause on invocation, the compiler
gives a varargs warning for the method definition. This warning was introduced in Java 7.

The reason for the additional warning is that the caller of a varargs method cannot do anything about the unchecked warning. At best he can
blindly suppress the unchecked warning with a @SuppressWarnings("unchecked") annotation, which is hazardous because the caller cannot know
whether the unchecked warning is justified or not. Only the method's provider can judge whether the unchecked warning can safely be ignored or
whether it will lead to subsequent errors due to heap pollution (see Technicalities.FAQ050). For this reason the provider of a varargs method is
responsible for deciding whether the unchecked warning on invocation of the method can be ignored or not.

With a varargs warning the compiler tries to tell the provider of a varargs method: invocation of your method can lead to type safety issues and
subsequent errors in form of unexpected ClassCastExceptions exceptions (collectively called heap pollution).

LINK TO THIS Practicalities.FAQ300A

REFERENCES Why does the compiler sometimes issue an unchecked warning when I invoke a "varargs" method?
What is a reifiable type?
What is heap pollution?
When does heap pollution occur?
How can I suppress a "varargs" warning?
What is the SuppressWarnings annotation?

How can I suppress a "varargs" warning?

By using a @SafeVarargs annotation.

A varargs warning can be suppressed using the @SafeVarargs annotation. When we use this annotation on a method with a variable argument list
the compiler will not only suppress the varargs warning for the method definition, but also the unchecked warnings for the method invocations.
Here is an example, first without the annotation:

Example (of a varargs warning):

public static <E> void addAll(List<E> list, E... array) { // varargs warning
 for (E element : array) list.add(element);
}

public static void main(String[] args) {
 addAll(new ArrayList<Pair<String,String>>(), // unchecked warning
 new Pair<String,String>("Leonardo","da Vinci"),
 new Pair<String,String>("Vasco","de Gama")
);
}

warning: [unchecked] Possible heap pollution from parameterized vararg type E
 public static <E> void addAll(List<E> list, E... array) {

warning: [unchecked] unchecked generic array creation for varargs parameter of type Pair<String,String>[]
 addAll(new ArrayList<Pair<String,String>>(),
 ^

Here is the same example, this time with the annotation:

Example (of a suppressed varargs warning):

@SafeVarargs
public static <E> void addAll(List<E> list, E... array) { // fine
 for (E element : array) list.add(element);
}

public static void main(String[] args) {
 addAll(new ArrayList<Pair<String,String>>(), // fine
 new Pair<String,String>("Leonardo","da Vinci"),
 new Pair<String,String>("Vasco","de Gama")
);
}

The @SafeVarargs annotation for the addAll() method eliminates both warnings.

As usual, you must not suppress warnings unless you are absolutely sure that they can safely be ignored. See Practicalities.FAQ300C for details on
suppressing the varargs warnings.

LINK TO THIS Practicalities.FAQ300B

REFERENCES What is the SuppressWarnings annotation?
Why does the compiler sometimes issue an unchecked warning when I invoke a "varargs" method?
What is a "varargs" warning?
When should I refrain from suppressing a "varargs" warning?

When should I refrain from suppressing a "varargs" warning?

When the varargs method in question can lead to heap pollution.

Suppressing a warning is always hazardous and should only be attempted when the warning can with certainty be considered harmless and
no heap pollution will ever occur. In all other situations you shoud refrain from suppressing any warnings.

Regarding suppression of a varargs warning: The provider of a varargs method may only suppress the warning if

the varargs method does not add any elements to the array that the compiler creates for the variable argument list, or
if the method adds an element to the array that the compiler creates for the variable argument list, the element must be type-
compatible to the array's component type.

Example (of a harmless varargs method):

@SafeVarargs
public static <E> void addAll(List<E> list, E... array) {
 for (E element : array) list.add(element);
}

public static void main(String... args) {
 addAll(new ArrayList<Pair<String,String>>(),
 new Pair<String,String>("Leonardo","da Vinci"),
 new Pair<String,String>("Vasco","de Gama")
);
}

The addAll() method only reads the array that the compiler created for the variable argument E... array. No heap pollution can occur;
this method is harmless; the varargs warning can be ignored and therefor safely suppressed.

Example (of an incorrect and harmful varargs method):

public static Pair<String,String>[] modify(Pair<String,String>... lists) { // varargs warning
 Object[] objs = lists;
 objs[0] = new Pair<String,String>("x","y");
 objs[1] = new Pair<Long,Long>(0L,0L); // corruption !!!
 return lists;
}

public static void main(String... args) {

 Pair<String,String>[] result
 = modify(new Pair<String,String>("Vasco","da Gama"), // unchecked warning
 new Pair<String,String>("Leonard","da Vinci"));
 for (Pair<String,String> p : result) {
 String s = p.getFirst(); // ClassCastException
 }
}

warning: [unchecked] Possible heap pollution from parameterized vararg type Pair<String,String>
 private static Pair<String,String>[] modify(Pair<String,String>... lists) {
 ^
warning: [unchecked] unchecked generic array creation for varargs parameter of type Pair<String,String>[]
 = modify(new Pair<String,String>("Vasco","da Gama"),
 ^

The method modify() is plain wrong and should be corrected. It adds a Pair<Long,Long> to an array that is supposed to contain only
elements of type Pair<String,String> and as a result the heap is polluted. The compiler issues a warning for the method definition as
such, but does not flag the offending assignment as an error. The invocation of method modify() also leads to a warning. If all these
warnings are ignored, an unexpected ClassCastException can occur.

While the varargs method in the example above is blatantly wrong, the situation can be far more subtle. Here is an example:

Example (of another incorrect and harmful varargs method):

public static <T> T[] method_1(T t1, T t2) {
 return method_2(t1, t2); // unchecked warning
}

public static <T> T[] method_2(T... args) { // varargs warning
 return args;
}

public static void main(String... args) {
 String[] strings = method_2("bad", "karma"); // fine
 strings = method_1("bad", "karma"); // ClassCastException
}

warning: [unchecked] unchecked generic array creation for varargs parameter of type T[]
 return method_2(t1, t2);
 ^
warning: [unchecked] Possible heap pollution from parameterized vararg type T
 static <T> T[] method_2(T... args) { // varargs warning
 ^

Method method_2() is a generic method and has a variable argument list of type T..., where T is the type variable. As long as the varargs
method is directly called, nothing bad will happen; the compiler infers that T is String in our example and returns an array of type
String[].

If the varargs method is called from another generic method such as method_1(), then the compiler will pass two arguments of type Object
as arguments to method method_2() due to type erasure. It will then infer that T is Object in our example and returns an array of type
Object[], which subsequently leads to an unexpected ClassCastException. In this situation the question is: who is to blame? Is the
varargs method incorrect, or is it incorrectly used? It is debatable whether it is a good idea to provide a method such as method_2() where a
type variable appears in the variable argument list. In any case, suppressing the varargs warning is not advisable because this method can
lead to heap pollution as demonstrated above.

In general, it is very difficult to decide whether the varargs warning can safely be suppressed. Whenever a non-reifiable type appears in the
variable argument list, an array with a non-reifiable component type is created by the compiler. This is always hazardous. As soon as this
array becomes accessible, heap pollution can occur. As a consequence, you can only safely suppress a varargs warning if you can make
sure that the automatically created array with a non-reifiable component type (or any copy thereof) never becomes accessible for
modification.

Here is an example of another unsafe varargs method:

Example (of another incorrect and harmful varargs method):

public class SomeClass<E> {

 private Pair<E,E>[] pairs;

 public SomeClass(Pair<E,E>... args) { // varargs warning
 pairs = args;
 }
 public Pair<E,E>[] getPairs() {
 List<Pair<E,E>> tmp = new ArrayList<Pair<E,E>>();
 for (Pair<E,E> p : pairs)

 tmp.add(p.clone());
 return tmp.toArray(pairs);
 }

 ... more methods ...
}

public static void main(String... args) {
 SomeClass<String> test = new SomeClass<String>(new Pair<String,String>("bad", "karma")); // unchecked
warning
 Pair<?,?>[] tmp = test.getPairs();
 tmp[0] = Pair.makePair(0L,0L);
 String s = test.pairs[0].getFirst(); // ClassCastException
}

warning: [unchecked] Possible heap pollution from parameterized vararg type Pair<E,E>
 public SomeClass(Pair<E,E>... args) {
 ^
warning: [unchecked] unchecked generic array creation for varargs parameter of type Pair<String,String>[]
 SomeClass<String> test = new SomeClass<String>(new Pair<String,String>("bad", "karma"));
 ^

The varargs method in question is the constructor of class SomeClass; it stores the automatically created array with a non-reifiable
component type Pair<E,E> in a private field. Any modification of this array can create heap pollution. Even if the class itself does not
modify the array in any of its methods, matters can go wrong. In the example, the getPairs() method creates a deep copy of the array and
passes the copy to its caller. As soon as someone gets hold of an array with a non-reifiable component type (like the copy of the pairs
field in the example), illegal elements can added to the array without any error or warning from the compiler. The heap pollution and the
resulting unexpected ClassCastException is shown in the main() method. Only if the automatically created array were confined to the
class and the class were guaranteed to use the array sensibly in all situations, then the varargs warning could safely be ignored.

In essence, there are very few situations in which you can safely suppress a varargs warning; usually the warning is justified.

LINK TO THIS Practicalities.FAQ300C

REFERENCES What is a "varargs" warning?
How can I suppress a "varargs" warning?
What is the SuppressWarnings annotation?
What is heap pollution?
When does heap pollution occur?

Which role do wildcards play in method signatures?

They broaden the set of argument or return types that a method accepts or returns.

Consider the problem of writing a routine that prints out all the elements in a collection. In non-generic Java it might look like this:

Example (of non-generic print method):

void printCollection(Collection c) {
 Iterator i = c.iterator();
 for (k = 0; k < c.size(); k++) {
 System.out.println(i.next());
 }
}

In generic Java the same method might be implemented like this.

Example (of generic print method):

void printCollection(Collection<Object> c) {
 for (Object e : c) {
 System.out.println(e);
 }
}

The problem is that this new version is much less useful than the old one. Whereas the old code could be called with any kind of collection as a
parameter, the new code only takes Collection<Object>, which is not a supertype of all kinds of collections. For instance, it is possible to invoke
the old version supplying a List<String> as an argument, while the new version rejects the List<String> argument because it has an
incompatible type.

So what we need here is the supertype of all kinds of collections and that's exactly what the unbounded wildcard parameterized type
Collection<?> is.

Example (final version of print method):

void printCollection(Collection<?> c) {
 for (Object e : c) {
 System.out.println(e);
 }
}

Now, we can call the print method with any type of collection.

Bounded wildcards are used for similar purposes. The sole difference is that the set of types that they allow is smaller (because it's restricted by the
respective bound). The key idea for use of wildcards in method signatures is to allow a broader set of argument or return types than would be
possible with a concrete instantiation.

LINK TO THIS Practicalities.FAQ301

REFERENCES

Which one is better: a generic method with type parameters or a non-generic method with wildcards?

It depends. There is not one-size-fits-all rule.

Often, we have two alternatives for the declaration of a method:

We can declare the method as a non-generic method using wildcard parameterized types as argument and return types.

Example: void reverse(List<?> list) { ... }

or

We can declare the method as a generic method with type parameters, that is, without using wildcards.

Example: <T> void reverse(List<T> list) { ...}

Whether one alternative is better than the other depends on the semantics of the method. In some situations there is no semantic difference between
the two alternatives and it is mostly a matter of taste and style which technique is preferred. But there are also semantics that cannot expressed
with wildcards as well as cases that cannot be solved without wildcards. The subsequent entries explore the details and provide examples.

uiLINK TO THIS Practicalities.FAQ302

REFERENCES
Under which circumstances are the generic version and the wildcard version of a method equivalent?
Under which circumstances do the generic version and the wildcard version of a method mean different things?
Under which circumstances is there no transformation to the wildcard version of a method possible?

Under which circumstances are the generic version and the wildcard version of a method equivalent?

If there is a transformation between the generic and the wildcard version that maintains the semantics.

In many situations we can replace wildcards by type parameters and vice versa. For example, the following two signatures are semantically
equivalent:

 void reverse(List<?> list) { ... }
<T> void reverse(List<?> list) { ... }

In this and the subsequent entries we aim to explore not only which of two versions is better than the other, but also how we can transform
between a generic and a wildcard version of a method signature.

The Transformation

Wildcard => Generic: The key idea for turning a method signature with a wildcard into a generic method signature is simple: replace each
wildcard by a type variable. These type variables are basically the captures of the respective wildcards, that is, the generic method signature makes
the captures visible as type parameters. For example, we can transform the following method signature

<T> void fill(List<? super T> list, T obj) { ... }

into this signature

<S, T extends S> void fill(List<S> list, T obj)

by replacing the wildcard "? super T" by an additional type parameter S. The type relationship, namely that the former wildcard is a supertype of
T, is expressed by saying that "T extends S".

Generic => Wildcard:Conversely, if we prefer method signatures with fewer type parameters, then we can reduce the number of type parameters
by means of wildcards: replace each type parameter that appears in a parameterized argument or return type by a wildcard. In the previous
example, we would transform the method signature

<S, T extends S> void fill(List<S> list, T obj)

into the signature

<T> void fill(List<? super T> list, T obj) { ... }

by replacing the type variable S by a wildcard. The type relationship, namely that T is a subtype of S, is expressed by giving the wildcard a lower
bound, that is, by saying "? super T".

The transformations sketched out above do not always work. Especially the transformation from a generic version to a wildcard version is not
always possible. Problems pop up, for instance, when the generic method signature has more than one type parameter and the type parameters have
certain type relationships, such as super-subtype or same-type relationships. In such a situation it might be impossible to translate the type
relationship among the type parameters into a corresponding relationship among the wildcards. In the example above, a semantically equivalent
wildcard version could be found, because the type relationship could be expressed correctly by means of the wildcard bound. But this is not
always possible, as is demonstrated in subsequent entries.

In this entry, we discuss only situations in which a transformation exists that allows for two semantically equivalent signature and the questions is:
which one is better? For illustration let us study a couple of examples.

Case Study #1

Let us consider the following reverse method. It can be declared as a generic method.

Example (of a method with type parameters):

public static <T> void reverse(List<T> list) {
 ListIterator<T> fwd = list.listIterator();
 ListIterator<T> rev = list.listIterator(list.size());
 for (int i = 0, mid = list.size() >> 1; i < mid; i++) {
 T tmp = fwd.next();
 fwd.set(rev.previous());
 rev.set(tmp);
 }
}

Alternatively, it can be declared as a non-generic method using a wildcard argument type instead. The transformation simply replaces the
unbounded type parameter T by the unbounded wildcard "?".

Example (of the same method with wildcards; does not compile):

public static void reverse(List<?> list) {
 ListIterator<?> fwd = list.listIterator();
 ListIterator<?> rev = list.listIterator(list.size());
 for (int i = 0, mid = list.size() >> 1; i < mid; i++) {
 Object tmp = fwd.next();
 fwd.set(rev.previous()); // error
 rev.set(tmp); // error
 }
}

The wildcard version has the problem that it does not compile. The iterators of a List<?> are of type ListIterator<?>, a side effect of which is
that their next and previous methods return an Object, while their set method requires a more specific type, namely the "capture of ?".

We can find a workaround for this problem by using raw types, as shown below.

Example (of the same method with wildcards; not recommended):

public static void reverse(List<?> list) {
 ListIterator fwd = list.listIterator();
 ListIterator rev = list.listIterator(list.size());
 for (int i = 0, mid = list.size() >> 1; i < mid; i++) {
 Object tmp = fwd.next();
 fwd.set(rev.previous()); // unchecked warning
 rev.set(tmp); // unchecked warning
 }
}

But even that workaround is not satisfying because the compiler gives us unchecked warnings, and rightly so. After all we are calling the set
method on the raw type ListIterator, without knowing which type of object the iterator refers to.

The best implementation of the wildcard version of reverse would use a generic helper method, as shown below.

Example (of the same method with wildcards; uses helper method):

private static <T> void reverseHelper(List<T> list) {

 ListIterator<T> fwd = list.listIterator();
 ListIterator<T> rev = list.listIterator(list.size());
 for (int i = 0, mid = list.size() >> 1; i < mid; i++) {
 T tmp = fwd.next();
 fwd.set(rev.previous());
 rev.set(tmp);
 }
}
publicstatic void reverse(List<?> list) {
 reverseHelper(list);
}

This solution compiles without warnings and works perfectly well, thanks to wildcard capture. However, it raises the question: why not use the
generic version in the first place. The helper method is exactly the generic version of our reverse method. The wildcard version only adds
overhead and does not buy the user anything.

Case Study #2

Let us start with the wildcard version this time. We discuss the example of a copy method.

Example (of the a method with wildcards):

public static<T> void copy(List<? super T> dest, List<? extends T> src) {
 int srcSize = src.size();
 if (srcSize > dest.size())
 throw new IndexOutOfBoundsException("Source does not fit in dest");
 ListIterator<? super T> di=dest.listIterator();
 ListIterator<? extends T> si=src.listIterator();
 for (int i = 0; i < srcSize; i++) {
 di.next();
 di.set(si.next());
 }
}

It is a method that has one type parameter T and uses two different wildcard types as argument types. We can transform it into a generic method
without wildcards by replacing the two wildcards by two type parameters. Here is the corresponding generic version without wildcards.

Example (of the same method without wildcards):

public static <U,T extends U,L extends T> void copy(List<U> dest, List<L> src) {
 int srcSize = src.size();
 if (srcSize > dest.size())
 throw new IndexOutOfBoundsException("Source does not fit in dest");
 ListIterator<U> di = dest.listIterator();
 ListIterator<L> si = src.listIterator();
 for (int i = 0; i < srcSize; i++) {
 di.next();
 di.set(si.next());
 }
}

The version without wildcards uses two additional type parameters U and L. U stands for a supertype of T and L stands for a subtype of T.
Basically, U and L are the captures of the wildcards "? extends T" and "? super T" from the wildcard version of thecopy method.

Semantically the two version are equivalent. The main difference is the number of type parameters. The version without wildcards expresses
clearly that 3 unknown types are involved: T, a supertype of T, and a subtype of T. In the wildcard version this is less obvious. Which version is
preferable is to the eye of the beholder.

Case Study #3

Let's study the example of a fill method, which has been mentioned earlier, greater detail. Let's start with the generic version without wildcards
and let's try to figure out whether we can get rid of the type parameters by means of wildcards.

Example (of the a method with type parameters):

public static <S, T extends S> void fill(List<S> list, T obj) {
 int size = list.size();
 ListIterator<S> itr = list.listIterator();
 for (int i = 0; i < size; i++) {
 itr.next();
 itr.set(obj);
 }
}

The method takes two type parameters S and T and two method parameters: an unknown instantiation of the generic type List, namely List<S>,
and an object of unknown type T. There is a relationship between S and T: S is a supertype of T.

When we try to eliminate the type parameters we find that we can easily replace the type parameter S by a wildcard, but we cannot get rid of the
type parameter T. This is because there is no way to express by means of wildcards that the fill method takes an argument of unknown type. We
could try something like this:

Example (of the same method with wildcards; does not work):

public static void fill(List<?> list, Object obj) {
 int size = list.size();
 ListIterator<?> itr = list.listIterator();
 for (int i = 0; i < size; i++) {
 itr.next();
 itr.set(obj); // error
 }
}

The first problem is that this version does not compile; the problem can be reduced to an unchecked warning by using a raw type ListIterator
instead of the unbounded wildcard ListIterator<?>. But the the real issues is that this signature gives up the relationship between the element
type of the list and the type of the object used for filling the list. A semantically equivalent version of the fill method would look like this:

Example (of the same method with wildcards):

public static <T> void fill(List<? super T> list, T obj) {
 int size = list.size();
 ListIterator<? super T> itr = list.listIterator();
 for (int i = 0; i < size; i++) {
 itr.next();
 itr.set(obj);
 }
}

Now, we have successfully eliminated the need for the type parameter S, which stands for the list's element type, by using the "? super T"
wildcard, but we still need the type parameter T. To this regard the example is similar to the copy method discussed earlier, because we can
reduce the number of type parameters by means of wildcards, but we cannot entirely eliminate the type parameters. Which version is better is a
matter of style and taste.

Conclusion: In all these examples it is mostly a matter of taste and style whether you prefer the generic or the wildcard version. There is usually
trade-off between ease of implementation (the generic version is often easier to implement) and complexity of signature (the wildcard version has
fewer type parameters or none at all).

LINK TO THIS Practicalities.FAQ302A

REFERENCES
Should I use wildcards in the return type of a method?
Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
What is the capture of a wildcard?
Under which circumstances do the generic version and the wildcard version of a method mean different things?
Under which circumstances is there no transformation to the wildcard version of a method possible?

Under which circumstances do the generic version and the wildcard version of a method mean different things?

When a type parameter appears repeatedly in a generic method signature and in case of multi-level wildcards.

In many situations we can replace wildcards by type parameters and vice versa. For example, the following two signatures are semantically
equivalent:

 void reverse(List<?> list) { ... }
<T> void reverse(List<T> list) { ...}

In the previous entry we saw several examples of equivalent method signature, but there are also situations in which the generic version and the
wildcard version of a method signature mean different things. These situations include generic method signature in which a type parameter appears
repeated and method signatures in which multi-level wildcards, such as List<Pair<?,?>>, appear. In the following we study a couple of
examples.

Case Study #1

Let us consider the implementation of a reverse method. It is slightly different from the reverse method we discussed in the previous entry. The
key difference is that the List type, and with it the type parameter T, appears twice in the method's signature: in the argument type and the return
type. Let's start again with the generic version of the reverse method.

Example (of a method with type parameters):

public static <T>List<T> reverse(List<T> list) {
 List<T> tmp = new ArrayList<T>(list);

 for (int i = 0; i < list.size(); i++) {
 tmp.set(i, list.get(list.size() - i - 1));
 }
 return tmp;
}

If we tried to declare this method as a non-generic method using wildcards, a conceivable signature could look like this.

Example (of the same method with wildcards; does not compile):

public static List<?> reverse(List<?> list) {
 List<?> tmp = new ArrayList<?>(list); // error
 for (int i = 0; i < list.size(); i++) {
 tmp.set(i, list.get(list.size() - i - 1)); // error
 }
 return tmp;
}

The first problem is that this version does not compile; the problem can be reduced to an unchecked warning by using the raw types List
and ArrayList instead of the unbounded wildcards List<?> andArrayList<?>. Even the warnings can be eliminated by relying on wildcard
capture and using a generic helper method. But one fundamental issue remains: the wildcard version has an entirely different semantic meaning
compared to the generic version.

The generic version is saying: the reverse method accepts a list with a certain, unknown element type and returns a list of that same type. The
wildcard version is saying: the reverse method accepts a list with a certain, unknown element type and returns a list of a potentially different
type. Remember, each occurrence of a wildcard stands for a potentially different type. In principle, the reverse method could take
a List<Apple> and return a List<Orange>. There is nothing in the signature or the implementation of the reverse method that indicates that
"what goes in does come out". In other words, the wildcard signature does not reflect our intent correctly.

Conclusion: In this example it the generic version and the wildcard version have different meaning.

Case Study #2

Another example where more than one wildcard occurs in the signature of the method.

Example (of a method with type parameters):

class Pair<S,T> {
 private S first;
 private T second;
 ...
 public Pair(S s,T t) { first = s; second = t; }

 public static <U> void flip(Pair<U,U> pair) {
 U tmp = pair.first;
 pair.first = pair.second;
 pair.second = tmp;
 }
}

When we try to declare a wildcard version of the generic flip method we find that there is no way of doing so. We could try the following:

Example (of the same method with wildcards; does not compile):

class Pair<S,T> {
 private S first;
 private T second;
 ...
 public Pair(S s,T t) { first = s; second = t; }

 public static void flip(Pair<?,?> pair) {
 Object tmp = pair.first;
 pair.first = pair.second; // error: imcompatible types
 pair.second = tmp; // error: imcompatible types
 }
}

But this wildcard version does not compile, and rightly so. It does not make sense to flip the two parts of a Pair<?,?>. Remember, each
occurrance of a wildcard stands for a potentially different type. We do not want to flip the two parts of a pair, if the part are of different types.
This additional requirement, that the parts of the pair must be of the same type, cannot be expressed by means of wildcards.

The wildcard version above would be equivalent to the following generic version:

Example (of the generic equivalent of the wildcard version; does not compile):

class Pair<S,T> {
 private S first;
 private T second;
 ...
 public Pair(S s,T t) { first = s; second = t; }

 public static <U,V>void flip(Pair<U,V> pair) {
 U tmp = pair.first;
 pair.first = pair.second; // error: imcompatible types
 pair.second = tmp; // error: imcompatible types

 }
}

Now it should be obvious that the wildcard version simply does not express our intent.

Conclusion: In this example only the generic version allows to express the intent correctly.

Case Study #3

If a method signature uses multi-level wildcard types then there is always a difference between the generic method signature and the wildcard
version of it. Here is an example. Assume there is a generic type Box and we need to declare a method that takes a list of boxes.

Example (of a method with a type parameter):

public static <T> void print1(List<Box<T>> list) {
 for (Box<T> box : list) {
 System.out.println(box);
 }
}

Example (of method with wildcards):

public static void print2(List<Box<?>> list) {
 for (Box<?> box : list) {
 System.out.println(box);
 }
}

Both methods are perfectly well behaved methods, but they are not equivalent. The generic version requires a homogenous list of boxes of the
same type. The wildcard version accepts a heterogenous list of boxes of different type. This becomes visible when the two print methods are
invoked.

Example (calling the 2 versions):

List<Box<?>> list1 = new ArrayList<Box<?>>();
list1.add(new Box<String>("abc"));
list1.add(new Box<Integer>(100));

print1(list1); // error
print2(list1); // fine

List<Box<Object>> list2 = new ArrayList<Box<Object>>();
list2.add(new Box<Object>("abc"));
list2.add(new Box<Object>(100));

print1(list2); // fine
print2(list2);// error

error: <T>print1(Box<T>>) cannot be applied to (Box<?>>)
 print1(list1);
 ^
error: print2(Box<?>>) cannot be applied to (Box<Object>>)
 print2(list2);
 ^

First, we create a list of boxes of different types and stuff a Box<String> and a Box<Integer> into the list. This heterogenous list of
type List<Box<?>> cannot be passed to the generic method, because the generic method expects a list of boxes of the same type.

Then, we create a list of boxes of the same type, namely of type Box<Object>, and we stuff two Box<Object> objects into the list. This homogenous
list of type List<Box<Object>> cannot be passed to the wildcard method, because the wildcard method expects a list of boxes, where there is no
restriction regarding the type of the boxes.

Let us consider a third version of the print method, again with wildcards, but more relaxed so that it accepts either type of list, the homogenous
and the heterogenous list of boxes.

Example (of another wildcard version):

public static void print3(List<? extends Box<?>> list) {
 for (Box<?> box : list) {
 System.out.println(box);
 }
}

Example (calling all 3 versions):

List<Box<?>> list1 = new ArrayList<Box<?>>();
list1.add(new Box<String>("abc"));

list1.add(new Box<Integer>(100));

print1(list1); // error
print2(list1); // fine
print3(list1); // fine

List<Box<Object>> list2 = new ArrayList<Box<Object>>();
list2.add(new Box<Object>("abc"));
list2.add(new Box<Object>(100));

print1(list2); // fine
print2(list2); // error
print3(list2); // fine

No matter how we put it, the generic version and the wildcard versions are not equivalent.

Conclusion: In this example it the generic version and the wildcard version have different meaning.

uiLINK TO THIS Practicalities.FAQ302B

REFERENCES
What do multi-level wildcards mean?
If a wildcard appears repeatedly in a type argument section, does it stand for the same type?
Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
What is the capture of a wildcard?
Under which circumstances are the generic version and the wildcard version of a method equivalent?
Under which circumstances is there no transformation to the wildcard version of a method possible?

Under which circumstances is there no transformation to the wildcard version of a method possible?

If a type parameter has more than one bound.

Wildcards can have at most one upper bound, while type parameters can have several upper bounds. For this reason, there is not wildcard
equivalent for generic method signatures with type parameter with several bounds. Here is an example.

Example (of a method with a type parameter with more than one bound):

public interface State {
 boolean isIdle();
}
public static <T extends Enum<T> & State> boolean hasIdleState(EnumSet<T> set) {
 for (T state : set)
 if (state.isIdle()) return true;
 return false;
}

This hasIdleState method has a type parameter that must be a enum type that implements the State interface. The requirement of both being an
enum type and implementing an interface cannot be expressed by means of wildcards. If we tried it it would look like this:

Example (of the same method without type parameters; does not compile):

public static boolean hasIdleState(EnumSet<? extends Enum<?> & State> set) { // error
 ...
}

This attempt fails because a wildcard cannot have two bounds and for this reason the expression "? extends Enum<?> & State" is illegal syntax.

Conclusion: In this example there is no way to find an equivalent version with wildcards and the generic version is the only viable solution.

uiLINK TO THIS Practicalities.FAQ302C

REFERENCES
What is the difference between a wildcard bound and a type parameter bound?
Under which circumstances are the generic version and the wildcard version of a method equivalent?
Under which circumstances do the generic version and the wildcard version of a method mean different things?

Should I use wildcards in the return type of a method?

Avoid it, if you can.

Methods that return their result through a reference of a wildcard type are rarely a good idea. The key problem is that access to the result is
restricted and there is often not much the caller can do with the result he receives. Remember, access to an object through a reference of a
wildcard type is restricted; the restrictions depend on the sort of wildcard being used. For this reason wildcard return types are best avoided.

Example (of a method with a wildcard return type; not recommended):

List<?> modifyList(List<?> list) {
 ...
 return list;
}

List<String> names = ...
List<?> result = modifyList(names);
result.add("Bobby Anderson"); // error

Since the result is returned through a wildcard reference, a whole bunch of methods cannot be invoked on the result. A generic method would in
this example be way more useful.

Example (alternative generic method; recommended):

<T> List<T> modifyList(List<T> list) {
 ...
 return list;
}

List<String> names = ...
List<String> result = modifyList(names);
result.add("Bobby Anderson"); // fine

It is hard to imagine that a method such as modifyList would be sensible in the first place. Most likely it is bad, if not buggy design. After all it is
weird that a method received one unknown type of list as input and returns another unknown type of list as output. Does it turn a List<Apples>
into a List<Oranges>? The generic version is more likely to be the more sensible signature to begin with. But there are examples, even in the
JDK, where methods return wildcard types and the design looks reasonable at first sight, and yet suffers from the restrictions outlined above. The
remainder of this FAQ entry discusses such a more realistic example. If you are not interested in further details, feel free to skip the rest of this
entry. It's quite instructive though, if you're interested in learning how to design generic classes properly.

A More Comprehensive Example

The Problem

As promised, we are going to study an example from the JDK to illustrate the problems with methods that return wildcard types. The example is
taken from the JDK package java.lang.ref. This package provides reference classes, which support a limited degree of interaction with the
garbage collector. All these reference classes are subtypes of a super class named Reference<T>.

Example (sketch of class java.lang.ref.Reference):

public abstract class Reference<T> {
 public T get() { ... }
 public void clear() { ... }
 ...
}

There are two reference classes of interest SoftReference<T> and WeakReference<T>. Instances of the reference classes can be registered with a
reference queue.

Example (sketch of class java.lang.ref.WeakReference):

public class WeakReference<T> extends Reference<T> {
 public WeakReference(T referent) { ... }
 public WeakReference(T referent, ReferenceQueue<? super T> q) { .. }
}

This reference queue is described by a type named ReferenceQueue<T>. Its poll and remove methods return elements from the queue through a
wildcard reference of type Reference<? extends T>.

Example (sketch of class java.lang.ref.ReferenceQueue):

public class ReferenceQueue<T> {
 public Reference<? extends T> remove() { ... }
 public Reference<? extends T> remove(long timeout) { ... }
 public Reference<? extends T> poll() { ... }
}

The methods of the ReferenceQueue<T> type are examples of methods that return their result through a wildcard type. The purpose of the
reference classes and the reference queue is of no relevance for our discussion. What we intend to explore are the consequences of the wildcard
return type of the reference queue's methods.

Let's consider a use case for these reference classes. It is common that the actual reference types are subtypes of the reference classes from the
JDK. This is because a reference type often must maintain additional data. In our example this subtype is called DateReference and it is weak
reference to a date object. It caches the representation of the referenced date as a time value and has a couple of additional methods.

Example (of a user-defined reference class):

public class WeakDateReference<T extends Date> extends WeakReference<T> {

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/Reference.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/Reference.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/Reference.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/WeakReference.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/WeakReference.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/ReferenceQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/ReferenceQueue.html

 long time;

 public WeakDateReference(T t) {
 super(t);
 time = t.getTime();
 }
 public WeakDateReference(T t,ReferenceQueue<? super T> q) {
 super(t,q);
 time = t.getTime();
 }
 public long getCachedTime() { return time; }

 public boolean isEquivalentTo(DateReference<T> other) {
 return this.time == other.getCachedTime();
 }
 public boolean contains(T t) {
 return this.get() == t;
 }
}

Let's now create such a weak date reference and register it with a reference queue.

Example (of using a user-defined reference class with a reference queue):

ReferenceQueue<Date> queue = new ReferenceQueue<Date>();
Date date = new Date();
WeakDateReference<Date> dateRef = new WeakDateReference<Date>(date, queue);

The reference queue will later contain weak date references that have been cleared by the garbage collector. When we retrieve entries from the
reference queue, they are passed to us through a reference of a the wildcard type Reference<? extends Date>, because this is the way the
reference queue's methods are declared.

Example (of using a user-defined reference class with a reference queue):

WeakDateReference<Date> deadRef = queue.poll(); // error
Reference<? extends Date> deadRef = queue.poll(); // fine

error: incompatible types
found : Reference<capture of ? extends Date>
required: WeakDateReference<.Date>
 WeakDateReference<Date> deadRef = queue.poll();
 ^

What is returned is a reference of type Reference<? extends Date> pointing toan object of type WeakDateReference<Date>. If we now try to
use the returned object we find that we cannot access the object as would like to. In particular, some of the methods of my weak date reference
type cannot be called.

Example (of using the returned reference object):

Reference<? extends Date> deadRef = queue.poll();

long time = deadRef.getCachedTime(); // error
long time = ((WeakDateReference<Date>)deadRef).getCachedTime(); // unchecked warning
long time = ((WeakDateReference<? extends Date>)deadRef).getCachedTime(); // fine

error: cannot find symbol
symbol : method getCachedTime()
location: class Reference<capture of ? extends Date>
 time = deadRef.getCachedTime();
 ^
warning: [unchecked] unchecked cast
found : Reference<capture of ? extends Date>
required: WeakDateReference<Date>
 time = ((WeakDateReference<Date>)deadRef).getCachedTime();
 ^

Before we can access any of the weak date reference type's methods we must cast down from its super-type Reference to its own type
WeakDateReference. This explains why the first invocation of thegetCachedTime method fails; the super-typeReference does not have any such
method.

So, we must cast down. We would like to cast the returned reference variable of type Reference<? extends Date> to the object's actual
type WeakDateReference<Date>, but the compiler issues an unchecked warning. This warning is justified because the reference queue can
potentially hold a mix of weak and soft references of all sorts as long as they refer to a Date object or a subtype thereof. We know that the
reference queue only holds objects of our weak date reference type, because we know the context of our little sample program. But the compiler
can impossibly know this and rejects the cast to WeakDateReference<Date> based on the static type information as an unchecked cast.

We can safely cast down from the type Reference<? extends Date> to the wildcard type WeakDateReference<? extends Date> though. This
is safe because the two types have the same type argument "? extends Date". The compiler can ensure that type WeakDateReference<?
extends Date> is a subtype of Reference<? extends Date> and the JVM can check at runtime based on the raw types that the referenced
object really is a WeakDateReference.

So, we invoke the weak date reference methods through a reference of the wildcard type WeakDateReference<? extends Date>. This fine for
the getCachedTimemethod, but fails when we try to invoke methods in whose argument type the type parameter T of our
type WeakDateReference<T> appears.

Example (of using the returned reference object):

Reference<? extends Date> deadRef = queue.poll();

long time = ((WeakDateReference<? extends Date>)deadRef).getCachedTime(); // fine
boolean equv = ((WeakDateReference<? extends Date>)deadRef).isEquivalentTo(dateRef); // error
boolean cont = ((WeakDateReference<? extends Date>)deadRef).contains(date); // error

error: isEquivalentTo(WeakDateReference<capture of ? extends Date>)
in WeakDateReference<capture of ? extends Date>
cannot be applied to (WeakDateReference<Date>)
boolean equv = ((WeakDateReference<? extends Date>)deadRef).isEquivalentTo(dateRef);
 ^
error: contains(capture of ? extends Date)
in WeakDateReference<capture of ? extends Date>
cannot be applied to (Date)
 boolean cont = ((WeakDateReference<? extends Date>)deadRef).contains(date);
 ^

This illustrates the problems that wildcard return types introduce: certain methods cannot be invoked through the returned wildcard reference. In
other word, there is not much you can do with the result. How severe the restrictions are, depends on te nature of the wildcard type, the type of
the returned object and the signatures of the methods that shall be invoked on the returned object. In our example we are forced to access the
result through a reference of type WeakDateReference<? extends Date>. As a consequence, we cannot invoke the methods boolean
isEquivalentTo(DateReference<T> other) and boolean contains(T t), because the type parameter T appears in their argument types.

Conclusion

Can or should we conlcude that methods with wildcard return types are always wrong? Not quite. There are other examples in the JDK, where
the wildcard return type does not impose any problems. The most prominent example is the generic class java.lang.Class<T>. It has a number
of methods that return wildcard such as Class<?>, Class<? super T>, and Class<? extends U>, but at the same time class Class<T> does not
have a single method in whose argument type the type parameter T would appear. The restriction illustrated above exists in principle, but in
practice it is irrelevant, because the type in question does not have any methods whose inaccessibility would hurt.

This is different for the generic ReferenceQueue<T> type discussed above. The super type Reference<T> does not have any methods in whose
argument type the type parameter T would appear, pretty much like class Class<T>. But, it is common that subtypes of type Reference<T> are
defined and used, and there is no reason why those subtypes shouldn't be generic and have method in whose argument type the type parameter T
would appear. And there we are ... and hit the limits.

A Conceivable Solution

The recommendation is: avoid wildcard return types if you can. The question is: can we avoid the wildcard return type in the reference queues's
methods? The answer is: yes, but it comes at a cost. In order to understand what the trade-off is we need to find out why the reference queue
returns a wildcard type instead of a concrete parameterized type. After all, no other queue type returns a wildcard from any of its methods;
consider for instance java.util.Queue or java.util.concurrent.BlockingQueue.

The crux in case of the ReferenceQueue is its interaction with the Reference type. Class Reference and all its subclasses have constructors that
permit attachment of a reference queue to a reference object. In class Reference this constructor is package visible, in the subclasses it is public.

Example (excerpt from class java.lang.ref.Reference):

public abstract class Reference<T> {

 ReferenceQueue<? super T> queue;
 Reference(T referent) { ... }
 Reference(T referent, ReferenceQueue<? super T> queue) { ... }

 public T get() { ... }
 public void clear() { ... }
 ...
}

The package visible constructor takes the wildcard instantiation ReferenceQueue<? super T> as the argument type and thereby allows to attach a
reference queue for references of a supertype, say Date, to a reference for a subtype, say NamedDate.

Example (of using a reference with a reference queue):

ReferenceQueue<Date> queue = new ReferenceQueue<Date>();
NamedDate date = new NamedDate("today");
WeakReference<NamedDate>dateRef = new WeakReference<NamedDate>(date, queue);

Thanks to the wildcard argument type in the reference's constructor we can place references of type Reference<NamedDate>into a reference queue
of type ReferenceQueue<Date>.

Inside class Reference, at some point in time, the reference puts itself into its attached reference queue. For this purpose the
type ReferenceQueue has a package visible enqueue method.

Example (excerpt from class java.lang.ref.ReferenceQueue):

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Queue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Queue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/Reference.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/Reference.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/ReferenceQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ref/ReferenceQueue.html

public class ReferenceQueue<T> {

 boolean enqueue(Reference<? extends T> ref) { ... }

 public Reference<? extends T> remove() { ... }
 public Reference<? extends T> remove(long timeout) { ... }
 public Reference<? extends T> poll() { ... }
}

This enqueue method must accept aReference<? extends T> as an argument, because it is permitted that a reference of a subtype can be put into
the reference queue. Like in the example above, where we registered a Reference<NamedDate> with a ReferenceQueue<Date>. If the enqueue
method required an argument of the concrete type Reference<T> then we could never store a Reference<NamedDate> in
a ReferenceQueue<Date>.

A consequence of accepting references of type Reference<? extends T> in the constructor is that the exact type of the references in the queue is
unknown. All retrieval methods, such as poll and remove, have no choice and must return the same wildcard type that was accepted in the
constructor. This is the reason why the reference queue's poll and remove methods return wildcard types instead of concrete type.

If we want to get rid of the wildcard return type we must give up the ability to attach a reference queue for references of a supertype, say Date, to
a reference for a subtype, say NamedDate. An alternative design would look like this:

Example (sketch of a revised Reference class; different from JDK version):

public abstract class Reference<T> {

 ReferenceQueue<T> queue;
 Reference(T referent) { ... }
 Reference(T referent, ReferenceQueue<T> queue) { ... }

 public T get() { ... }
 public void clear() { ... }
 ...
}

Example (sketch of a revised ReferenceQueue class; different from JDK version):

public class ReferenceQueue<T> {

 boolean enqueue(Reference<T> ref) { ... }

 public Reference<T> remove() { ... }
 public Reference<T> remove(long timeout) { ... }
 public Reference<T> poll() { ... }
}

After such a redesign we can not longer place references to NamedDate into a reference queue for reference to Date.

Example (of using a reference with a reference queue; different from JDK version):

ReferenceQueue<Date> queue = new ReferenceQueue<Date>();
NamedDate date = new NamedDate("today");
WeakReference<NamedDate>dateRef = new WeakReference<NamedDate>(date, queue); // error

In return we now receive a concrete parameterized type when we take references out of the queue and the concrete type gives us full access to the
reference type. The restrictions resulting from wildcard return types are eliminated.

Example (of using a user-defined reference type; different from JDK version):

Reference<Date> deadRef = queue.poll();

long time = ((WeakDateReference<Date>)deadRef).getCachedTime(); // fine
boolean equv = ((WeakDateReference<Date>)deadRef).isEquivalentTo(dateRef); // fine
boolean cont = ((WeakDateReference<Date>)deadRef).contains(date); // fine

As you can see, there is a trade-off: the flexibility to put refererences to a subtype into a reference queue of references to a supertype costs us
limited access to the references retrieved from the queue, and vice versa. The design decisions made for the reference queue are certainly
reasonable, because user-defined reference types with sophisticated functionality are probably rare and hence the restrictions from the wildcard
return type will not hit too many programmers.

Nonetheless, the case study illustrates that design decisions made in one place have consequences in other places. As a general rule, be aware of
the restrictions that come with wildcard return types and avoid then if you can, unless you have a compelling reason to use them anyway.

LINK TO THIS Practicalities.FAQ303

REFERENCES Under which circumstances are the generic version and the wildcard version of a method equivalent?
Under which circumstances do the generic version and the wildcard version of a method mean different things?
Under which circumstances is there no transformation to the wildcard version of a method possible?
Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard instantiation?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard instantiation?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard instantiation?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard instantiation?

Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard instantiation?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard instantiation?

How do I implement a method that takes a wildcard argument?

Using a generic helper method and wildcard capture.

Consider the situation where you decided that a certain method should take arguments whose type is a wildcard parameterized type. When you
start implementing such a method you will find that you do not have full access to the argument. This is because wildcards do not permit certain
operations on the wildcard parameterized type.

Example (implementation of a reverse method with wildcards; does not work):

public static void reverse(List<?> list) {
 List<?> tmp = new ArrayList<?>(list); // error
 for (int i=0;i<list.size();i++){
 tmp.set(i,list.get(list.size()-i-1)); // error
 }
 list = tmp;
}

Using the wildcard type List<?> we can neither create a temporary copy of the argument nor can we invoke the set method. A workaround, that
works in this particular case, is use of wildcard capture and a generic helper method.

Example (corrected implementation of a reverse method with wildcards):

public static void reverse(List<?> list) {
 rev(list);
}
private static <T> void rev(List<T> list) {
 List<T> tmp = new ArrayList<T>(list);
 for (int i=0;i<list.size();i++){
 tmp.set(i,list.get(list.size()-i-1));
 }
 list = tmp;
}

Wildcard capture makes it possible to invoke a generic helper method. The helper method does not use any wildcards; it is generic and has a type
parameter instead. It has unrestricted access to its arguments' methods and can provide the necessary implementation.

Since the helper method has the exact same functionality as the original method and permits the same set of argument types, one might consider
using it instead of the method with the wildcard argument in the first place.

Example (generic version of the reverse method):

public static <T> void reverse(List<T> list) {
 List<T> tmp = new ArrayList<T>(list);
 for (int i=0;i<list.size();i++){
 tmp.set(i,list.get(list.size()-i-1));
 }
 list = tmp;
}

LINK TO THIS Practicalities.FAQ304

REFERENCES What is the capture of a wildcard?
What is a parameterized (or generic) method?
Can I use a wildcard parameterized type like any other type?
Can I create an object whose type is a wildcard parameterized type?

How do I implement a method that takes a multi-level wildcard argument?

Using several generic helper methods and wildcard capture.

Here is a an example of a method whose argument and return type is a multi-level wildcard. It is a method that takes a list whose element type is
an arbitrary pair type and return such a list. The swapAndReverse method reverses the order all the list elements and swaps the members of each
pair. It is a contrived example for the purpose of illustrating the implementation technique.

Example:

class Pair<E> {
 private E fst, snd;
 public E getFirst() { return fst; }

 public void setFirst(S s) { fst = s; }
 ...
}
class Test {
 public static ArrayList<? extends Pair<?>> swapAndReverse(ArrayList<? extends Pair<?>> l) {
 ...
 }
 public static void main(String[] args) {
 ArrayList<Pair<Integer>> list = new ArrayList<Pair<Integer>>();
 list.add(new Pair<Integer>(-1,1,0));
 list.add(new Pair<Integer>(1,0,0));
 ...
 List<?> result = swapAndReverse(list);

 ArrayList<Pair<?>>list = new ArrayList<Pair<?>>();
 list.add(new Pair<String>("a","b","c"));
 list.add(new Pair<Integer>(1,0,-1));
 list.add(new Pair<Object>(new Date(),Thread.State.NEW,5));
 ...
 List<?> result = swapAndReverse(list);
 }
}

The swapAndReverse method can be invoked on homogenous lists of pairs of the same type, such as a ArrayList<Pair<Integer>>, but also on a
heterogenous list of pairs of different types, such as ArrayList<Pair<?>>.

When we try to implement the method we find that the wildcard argument type does not permit invocation of the operations that we need.

Example (implementation of a swapAndReverse method with wildcards; does not work):

public static ArrayList<? extends Pair<?>> swapAndReverse(ArrayList<? extends Pair<?>> l) {
 ArrayList<? extends Pair<?>> list
 = new ArrayList<? extends Pair<?>>(l); // error
 for (int i=0;i<l.size();i++){
 list.set(i,l.get(l.size()-i-1)); // error
 }
 for (Pair<?> pair : list) {
 Object e = pair.getFirst();
 pair.setFirst(pair.getSecond());// error
 pair.setSecond(e); // error
 }
 return list;
}

We cannot create a temporary copy of the list and cannot access the individual pairs in the list. Hence we apply the capture-helper technique from
above.

Example (implementation of a swapAndReverse method with helper method; does not work):

public static ArrayList<? extends Pair<?>> swapAndReverse(ArrayList<? extends Pair<?>> l) {
 return capturePairType(l);
}
private static <T extends Pair<?>> ArrayList<T> capturePairType(ArrayList<T> l) {
 ArrayList<T> list = new ArrayList<T>(l);
 for (int i=0;i<l.size();i++){
 list.set(i,l.get(l.size()-i-1));
 }
 for (T pair : list) {
 Object e = pair.getFirst();
 pair.setFirst(pair.getSecond()); // error
 pair.setSecond(e); // error
 }
 return list;
}

The compiler will capture the type of the pairs contained in the list, but we still do not know what type of members the pairs have. We can use the
capture-helper technique again to capture the pairs' type argument.

Example (corrected implementation of a swapAndReverse method with wildcards):

public static ArrayList<? extends Pair<?>> swapAndReverse(ArrayList<? extends Pair<?>> l) {
 return capturePairType(l);
}
private static <T extends Pair<?>> ArrayList<T> capturePairType(ArrayList<T> l) {
 ArrayList<T> list = new ArrayList<T>(l);
 for (int i=0;i<l.size();i++){
 list.set(i,l.get(l.size()-i-1));

 }
 for (T pair : list) {
 captureMemberType(pair);
 }
 return list;
}
private static <E> void captureMemberType(Pair<E> pair) {
 E e = pair.getFirst();
 pair.setFirst(pair.getSecond());
 pair.setSecond(e);
}

In this case there is no alternative to the stepwise application of the capture-helper technique. A generic version of the swapAndReverse method
would have slightly different semantics.

Example (parameterized version of the swapAndReverse method):

public static <E,T extends Pair<E>> ArrayList<T> swapAndReverse(ArrayList<T> l) {
 ArrayList<T> list = new ArrayList<T>(l);
 for (int i=0;i<l.size();i++){
 list.set(i,l.get(l.size()-i-1));
 }
 for (T pair : list) {
 E e = pair.getFirst();
 pair.setFirst(pair.getSecond());
 pair.setSecond(e);
 }
 return list;
}

This version of the swapAndReverse method has one disadvantage: it does not accept a mixed list of pairs of arbitrary types, such as
ArrayList<Pair<?>>.

Example:

class Test {
 public static void main(String[] args) {
 ArrayList<Pair<Integer>> list = new ArrayList<Pair<Integer>>();
 list.add(new Pair<Integer>(-1,1,0));
 list.add(new Pair<Integer>(1,0,0));
 ...
 List<?> result = swapAndReverse(list);

 ArrayList<Pair<?>> list = new ArrayList<Pair<?>>();
 list.add(new Pair<String>("a","b","c"));
 list.add(new Pair<Integer>(1,0,0));
 list.add(new Pair<Object>(new Date(),Thread.State.NEW,5));
 ...
 List<?> result = swapAndReverse(list); // error
 }
}

error: <E,T>swapAndReverse(java.util.ArrayList<T>) in Test cannot be applied to (java.util.ArrayList<Pair<?>>)
 List<?> result = swapAndReverse(list);
 ^

On the other hand, the generic swapAndReverse method has the advantage that it returns a concrete instantiation of ArrayList, that does not suffer
from the limitations that come with the wildcard instantiation that is returned from the wildcard version of the swapAndReverse method.

LINK TO THIS Practicalities.FAQ305

REFERENCES How do I implement a method that takes a wildcard argument?
What do multi-level wildcards mean?
What is the capture of a wildcard?
What is a parameterized or generic method?
What is a bounded type parameter?
Which types are permitted as type parameter bounds?
Can I use a type parameter as part of its own bounds or in the declaration of other type parameters?
Can I use a wildcard parameterized type like any other type?
Can I create an object whose type is a wildcard parameterized type?

I want to pass a U and a X<U> to a method. How do I correctly declare that method?

Using an upper bound wildcard parameterized type instead of a concrete parameterized type as the argument type.

Example (has a bug):

interface Acceptor<V> {
 void accept(Task<V> task, V v);
}
interface Task<U> {
 void go(Acceptor<? super U> acceptor);
}
class AcceptingTask<U> implements Task<U> {
 public void go(Acceptor<? super U> acceptor) {
 U result = null;
 ... produce result ...
 acceptor.accept(this, result); // error
 }
}

error: accept(Task<capture of ? super U>,capture of ? super U)
in Acceptor<capture of ? super U> cannot be applied to (AcceptingTask<U>,U)
 acceptor.accept(this, result);
 ^

This is the example of a callback interface Acceptor and its accept method which takes result-producing task and the result. Note that the accept
method takes a result of type V and a corresponding task of type Task<V>.

The task is described by an interface Task. It has a method go that is supposed to produce a result and takes an Acceptor, to which it passes the
result.

The class AcceptingTask is an implementation of the Task interface and in its implementation of the go method we see an invocation of the
accept method. This invocation fails.

The problem with this invocation is that the accept method is invoked on a wildcard instantiation of the Acceptor, namely Acceptor<? super
U>. Access to methods through wildcard parameterized types is restricted. The error message clearly indicates the problem. Method accept in
Acceptor<? super U> expects a Task<capture of ? super U> and a capture of ? super U. What we pass as arguments are a
AcceptingTask<U> and a U. The argument of type U is fine because the declared argument type is an unknown supertype of U. But the argument
of type AcceptingTask<U> is a problem. The declared argument type is an instantiation of Task for an unknown supertype of U. The compiler
does not know which supertype and therefor rejects all argument types.

The crux is that the signature of the accept method is too restrictive. If we would permit instantiations of Task for subtypes of U, then it would
work.

Example (corrected):

interface Acceptor<V> {
 void accept(Task<? extends V> task, V v);
}
interface Task<U> {
 void go(Acceptor<? super U> acceptor);
}
class AcceptingTask<U> implements Task<U> {
 public void go(Acceptor<? super U> acceptor) {
 U result = null;
 ... produce result ...
 acceptor.accept(this, result); // fine
 }
}

With this relaxed signature the accept method in Acceptor<? super U> expects a Task<? extends capture of ? super U>, that is, an
instantiation of Task for a subtype of a supertype of U and Task<U> meets this requirement.

The common misunderstanding here is that the signature accept(Task<V> task, V v) looks that I can pass a Task<U> whenever I can pass a U.
This is true for concrete instantiations of the enclosing type, but not when wildcard instantiations are used. The accessibility rules for methods that
take the type parameter such as V as an argument and methods that take a parameterized type instantiated on the type parameter such as Task<V>
are very different.

The solution to the problem is relaxing the signature by using a wildcard parameterized type as an argument type instead of a concrete
parameterized type.

LINK TO THIS Practicalities.FAQ306

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parmeterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameteriezed type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard instantiation?

Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard instantiation?
In a wildcard instantiation, can I read and write fields whose type is the type parameter?

Working With Generic Interfaces

Can a class implement different instantiations of the same generic interface?

No, a type must not directly or indirectly derive from two different instantiations of the same generic interface.

The reason for this restriction is the translation by type erasure. After type erasure the different instantiations of the same generic interface collapse
to the same raw type. At runtime there is no distinction between the different instantiations any longer.

Example (of illegal subtyping from two instantiations of the same generic interface):

class X implements Comparable<X>,Comparable<String> { // error
 public int compareTo(X arg) { ... }
 public int compareTo(String arg) { ... }
}

During type erasure the compiler would not only remove the type arguments of the two instantiations of Comparable, it would also try to create the
necessary bridge methods. Bridge methods are synthetic methods generated by the compiler; they are needed when a class has a parameterized
supertype.

Example (same as above, after a conceivable translation by type erasure):

class X implements Comparable,Comparable {
 public int compareTo(X arg) { ... }
 public int compareTo(String arg) { ... }
 public int compareTo(Object arg) { return compareTo((X)arg); }
 public int compareTo(Object arg) { return compareTo((String)arg); }
}

The bridge method generation mechanism cannot handle this.

LINK TO THIS Practicalities.FAQ401

REFERENCES What is type erasure?
What is a bridge method?
Can I use different instantiations of a same generic type as bounds of a type parameter?
Can a subclass implement another instantiation of a generic interface than any of its superclasses does?
What happens if a class implements two parameterized interfaces that define the same method?

Can a subclass implement a different instantiation of a generic interface than any of its superclasses does?

No, the superclass determines which instantiation of a generic interface the entire class hierarchy must implement.

Example:

class Person implements Comparable<Person> {
 public int compareTo(Person arg) { ... }
}
class Student extends Person implements Comparable<Student> { // error
 public int compareTo(Student arg) { ... }
}

error: java.lang.Comparable cannot be inherited with different arguments: <Student> and <Person>
 class Student extends Person implements Comparable<Student> {
 ^

The Student subclass would be implementing two different instantiations of the generic Comparable interface, which is illegal. The consequence
is that a superclass that implement a certain instantiation of a generic interface determines for all its subclasses which instantiation of the interface
they must implement. No subclass can ever implement another instantiation of the generic interface.

This consequence makes proper use of generic interfaces fairly challenging. Here is another example of the effect, using the Delayed interface
from the java.util.concurrent package.

Example (interface java.util.concurrcent.Delayed):

public interface Delayed extends Comparable<Delayed> {
 long getDelay(TimeUnit unit);
}

The Delayed interface is a sub-interface of an instantiation of the Comparable interface and thereby takes away the chance that any implementing
class can ever be comparable to anything else but a Delayed object.

Example:

class SomeClass implements Delayed, Comparable<SomeClass> { // error
 public long getDelay(TimeUnit unit) { ... }
 public int compareTo(Delayed other) { ... }
 public int compareTo(SomeClass other) { ... }
}

error: java.lang.Comparable cannot be inherited with different arguments: <java.util.concurrent.Delayed> and
<SomeClass>
 class SomeClass implements Delayed, Comparable<SomeClass> {
 ^

LINK TO THIS Practicalities.FAQ402

REFERENCES Can a class implement different instantiations of the same generic interface?

What happens if a class implements two parameterized interfaces that both define a method with the same name?

If the two method have the same erasure then the class is illegal and rejected with a compile-time error message.

If, after type erasure, two inherited methods happen to have the same erasure, then the compiler issues an error message.

Example (of illegal class definition; before type erasure):

interface Equivalent<T> {
 boolean equalTo(T other);
}
interface EqualityComparable<T> {
 boolean equalTo(T other);
}
class SomeClass implements Equivalent<Double>, EqualityComparable<SomeClass> { // error
 public boolean equalTo(Double other) { ... }
 public boolean equalTo(SomeClass other) { ... }
}

error: name clash: equalTo(T) in EqualityComparable<SomeClass> and equalTo(T) in Equivalent<java.lang.String>
have the same erasure, yet neither overrides the other
 class SomeClass implements EqualityComparable<SomeClass>, Equivalent<Double> {
 ^

During type erasure the compiler does not only create the type erased versions of the two colliding interfaces, it would also try to create the
necessary bridge methods. Bridge methods are synthetic methods generated by the compiler when a class has a parameterized supertype.

Example (after a conceivable translation by type erasure):

interface Equivalent {
 boolean equalTo(Object other);
}
interface EqualityComparable {
 boolean equalTo(Object other);
}

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/package-summary.html

class SomeClass implements Equivalent, EqualityComparable {
 public boolean equalTo(Double other) { ... }
 public boolean equalTo(Object other) { return equalTo((Double)other); }
 public boolean equalTo(SomeClass other) { ... }
 public boolean equalTo(Object other) { return equalTo((SomeClass)other); }
}

The bridge methods would have the same signature. Instead of resolving the conflict the compiler reports an error.

By the way, the problem is not that the class has several overloaded versions of the equalTo method. The problem stems from the fact that the
interfaces are generic and the methods have the same type erasure. No problem occurs when the two interfaces have no type parameter.

Example (of legal class definition):

interface Equivalent {
 boolean equalTo(Double other);
}
interface EqualityComparable {
 boolean equalTo(SomeClass other);
}
class SomeClass implements Equivalent, EqualityComparable {
 public boolean equalTo(Double other) { ... }
 public boolean equalTo(SomeClass other) { ... }
}

In the example above the compiler need not generate any bridge methods because the interfaces are not generic.

Note, that there is no problem if the two interfaces are generic and the conflicting methods have different type erasures.

Example (of legal class definition):

interface Equivalent<T extends Number> {
 boolean equalTo(T other);
}
interface EqualityComparable<T> {
 boolean equalTo(T other);
}
class SomeClass implements Equivalent<Double>, EqualityComparable<SomeClass> {
 public boolean equalTo(Double other) { ... }
 public boolean equalTo(SomeClass other) { ... }
}

Example (after a conceivable translation by type erasure):

interface Equivalent {
 boolean equalTo(Number other);
}
interface EqualityComparable {
 boolean equalTo(Object other);
}
class SomeClass implements Equivalent, EqualityComparable {
 public boolean equalTo(Double other) { ... }
 public boolean equalTo(Number other) { return equalTo((Double)other); }
 public boolean equalTo(SomeClass other) { ... }
 public boolean equalTo(Object other) { return equalTo((SomeClass)other); }
}

The two equalTo methods have different erasures and then the bridge method generation mechanism create two bridge methods with different
signatures and no problem occurs.

Effects similar to ones illustrated above can be observed with a parameterized superclass and a parameterized interface if they have a method with
the same type erasure.

Last but not least, a legal way of implementing two interfaces with methods that have the same type erasure: as long as the colliding methods are
instantiated for the same type argument there is no problem at all.

Example (of legal class definition):

class SomeClass implements Equivalent<SomeClass>, EqualityComparable<SomeClass> {
 public boolean equalTo(SomeClass other) { ... }
}

The class provide exactly one method, namely the matching one from both interfaces and the compiler generates one synthetic bridge method. No
problem.

Example (after type erasure):

class SomeClass implements Equivalent, EqualityComparable {

 public boolean equalTo(SomeClass other) { ... }
 public boolean equalTo(Object other) { return equalTo((SomeClass)other); }
}

LINK TO THIS Practicalities.FAQ403

REFERENCES What is type erasure?
What is a bridge method?

Can an interface type nested into a generic type use the enclosing type's type parameters?

No, but as workaround you can generify the nested interface itself.

Nested interfaces are implicitly static. This is sometimes overlooked because the interface looks like it were a non-static member of its enclosing
class, while in fact it is static. Since type parameters must not be used in any static context of a generic type, a nested interface cannot use its
enclosing type's type parameters.

Example (of a nested interface):

interface Action {
 void run();
}
final class SomeAction implements Action {
 public void run() { … }
}
final class Controller<A extends Action>{
 public interface Command {
 void doIt(A action); // error
 void undoIt(A action); // error
 }
 …
}

error: non-static class A cannot be referenced from a static context
 void doIt(A action);
 ^
error: non-static class A cannot be referenced from a static context
 void undoIt(A action);
 ^

The Command interface is nested into the generic Controller class. Inside the nested interface we cannot refer to the type parameter A of the
enclosing class, because the nested interface is implicitly static and type parameters must not appear in any static context.

So, how do we express that the Command interface mandates do/undo methods for different types of actions? The solution is to generify the
interface itself independently of the generic enclosing class.

Example (same as above, but corrected):

interface Action {
 void run();
}
final class SomeAction implements Action {
 public void run() { … }
}
final class Controller<A extends Action> {
 public interface Command<B extends Action> {
 void doIt(B action);
 void undoIt(B action);
 }
 …
}

LINK TO THIS Practicalities.FAQ404

REFERENCES Why can't I use a type parameter in any static context of the generic class?
How do I refer to an interface type nested into a generic type?

Implementing Infrastructure Methods

How do I best implement the equals method of a generic type?

Override Object.equals(Object)as usual and perform the type check using the unbounded wildcard instantiation.

The recommended implementation of the equals method of a generic type looks like the one shown in the example below. Conceivable
alternatives are discussed and evaluated later.

Example (recommended implementation of equals):

class Triple<T> {
 private T fst, snd, trd;
 public Triple(T t1, T t2, T t3) {fst = t1; snd = t2; trd = t3;}
 ...
 public boolean equals(Object other) {
 if (this == other) return true;
 if (other == null) return false;
 if (this.getClass() != other.getClass()) return false;
 Triple<?> otherTriple = (Triple<?>)other;
 return (this.fst.equals(otherTriple.fst)
 && this.snd.equals(otherTriple.snd)
 && this.trd.equals(otherTriple.trd));
 }
}

Perhaps the greatest difficulty is the downcast to the triple type, after the check for type match has been passed successfully. The most natural
approach would be a cast to Triple<T>, because only objects of the same type are comparable to each other.

Example (not recommended):

class Triple<T> {
 private T fst, snd, trd;
 public Triple(T t1, T t2, T t3) {fst = t1; snd = t2; trd = t3;}
 ...
 public boolean equals(Object other) {
 if (this == other) return true;
 if (other == null) return false;
 if (this.getClass() != other.getClass()) return false;
 Triple<T>otherTriple = (Triple<T>)other; // unchecked warning
 return (this.fst.equals(otherTriple.fst)
 && this.snd.equals(otherTriple.snd)
 && this.trd.equals(otherTriple.trd));
 }
}

The cast to Triple<T> results in an "unchecked cast" warning, because the target type of the cast is a parameterized type. Only the cast to
Triple<?> is accepted without a warning. Let us try out a cast to Triple<?> instead of Triple<T>.

Example (better, but does not compile):

class Triple<T> {
 private T fst, snd, trd;
 public Triple(T t1, T t2, T t3) {fst = t1; snd = t2; trd = t3;}
 ...
 public boolean equals(Object other) {
 if (this == other) return true;
 if (other == null) return false;
 if (this.getClass() != other.getClass()) return false;
 Triple<T> otherTriple = (Triple<?>)other; // error
 return (this.fst.equals(otherTriple.fst)
 && this.snd.equals(otherTriple.snd)
 && this.trd.equals(otherTriple.trd));
 }
}

error: incompatible types
found : Triple<capture of ?>
required: Triple<T>
 Triple<T> otherTriple = (Triple<?>)other;
 ^

This implementation avoids the"unchecked" cast, but does not compile because the compiler refuses to assign a Triple<?> to a Triple<T>. This
is because the compiler cannot ensure that the unbounded wildcard parameterized type Triple<?> matches the concrete parameterized type
Triple<T>. To make it compile we have to change the type of the local variable otherTriple from Triple<T> to Triple<?>. This change leads
us to the first implementation shown in this FAQ entry, which is the recommended way of implementing the equals method of a generic type.

Evaluation of the alternative implementations.

How do the two alternative implementations, the recommended one casting to Triple<?> and the not recommended one casting to Triple<T>,
compare? The recommended implementation compiles without warnings, which is clearly preferable when we strive for warning-free compilation
of our programs. Otherwise there is no difference in functionality or behavior, despite of the different cast expressions in the source code. At
runtime both casts boils down to a cast to the raw type Triple.

If there is no difference in functionality and behavior and one of the implementations raises a warning, isn't there a type-safety problem? After all,
"unchecked" warnings are issued to alert the programmer to potentially unsafe code. It turns out that in this particular cases all is fine. Let us see
why.

With both implementations of equals it might happen that triples of different member types, like a Triple<String> and a Triple<Number>, pass
the check for type match via getClass() and the cast to Triple<?> (or Triple<T>). We would then compare members of different type with
each other. For instance, if a Triple<String> and a Triple<Number> are compared, they would pass the type check, because they are both
triples and we would eventually compare the Number members with the String members. Fortunately, the comparison of a String and a Number
always yields false, because both String.equals and Number.equals return false in case of comparison with an object of an imcompatible
type.

In general, every implementation of an equals method is responsible for performing a check for type match and to return false in case of
mismach. This rule is still valid, even in the presence of Java generics, because the signature of equals is still the same as in pre-generic Java: the
equals method takes an Object as an argument. Hence, the argument can be of any reference type and the implementation of equals must check
whether the argument is of an acceptable type so that the actual comparison for equality makes sense and can be performed.

Yet another alternative.

It might seem natural to provide an equals method that has a more specific signature, such as a version of equals in class Triple that takes a
Triple<T> as an argument. This way we would not need a type check in the first place. The crux is that a version of equals that takes a
Triple<T> as an argument would not be an overriding version of Object.equals(Object), because the equals method in Object is not generic
and the compiler would not generate the necessary bridge methods. We would have to provide the bridge method ourselves, which again would
result in an "unchecked" warning.

Example (not recommended):

class Triple<T> {
 private T fst, snd, trd;
 public Triple(T t1, T t2, T t3) {fst = t1; snd = t2; trd = t3;}
 ...
 public boolean equals(Triple<T> other) {
 if (this == other) return true;
 if (other == null) return false;
 return (this.fst.equals(other.fst)
 && this.snd.equals(other.snd)
 && this.trd.equals(other.trd));
 }
 public boolean equals(Object other) {
 return equals((Triple<?>) other); // unchecked warning
 }
}

This implementation has the flaw of raising an "unchecked" warning and offers no advantage of the recommended implementation to make up for
this flaw.

LINK TO THIS Practicalities.FAQ501

REFERENCES What is a bridge method?
What is an "unchecked" warning?
What is the capture of a wildcard?
What is a wildcard capture assignment-compatible to?

How do I best implement the clone method of a generic type?

Override Object.clone() as usual and ignore the inevitable unchecked warnings.

The recommended implementation of the clone method of a generic type looks like the one shown in the example below.

Example (implementation of clone):

class Triple<T> implements Cloneable {
 private T fst, snd, trd;
 public Triple(T t1, T t2, T t3) {fst = t1; snd = t2; trd = t3;}
 ...
 public Triple<T> clone() {
 Triple<T> clon = null;
 try {

 clon = (Triple<T>)super.clone(); // unchecked warning
 } catch (CloneNotSupportedException e) {
 throw new InternalError();
 }
 try {
 Class<?> clzz = this.fst.getClass();
 Method meth = clzz.getMethod("clone", new Class[0]);
 Object dupl = meth.invoke(this.fst, new Object[0]);
 clon.fst = (T)dupl; // unchecked warning
 } catch (Exception e) {
 ...
 }
 try {
 Class<?> clzz = this.snd.getClass();
 Method meth = clzz.getMethod("clone", new Class[0]);
 Object dupl = meth.invoke(this.snd, new Object[0]);
 clon.snd = (T)dupl; // unchecked warning
 } catch (Exception e) {
 ...
 }
 try {
 Class<?> clzz = this.trd.getClass();
 Method meth = clzz.getMethod("clone", new Class[0]);
 Object dupl = meth.invoke(this.trd, new Object[0]);
 clon.trd = (T)dupl; // unchecked warning
 } catch (Exception e) {
 ...
 }
 return clon;
 }
}

Return type.

In our implementation we declared the return type of the clone method not as type Object, but of the more specific generic type. This is possible,
since the overriding rules have been relaxed and an overriding method in a subclass need no longer have the exact same signature as the
superclass's method that it overrides. Since Java 5.0 it is permitted that the subclass version of a method returns a type that is a subtype of the
return type of the superclass's method. In our example, the method clone in class Triple<T> returns a Triple<T> and overrides the clone method
in class Object, which returns an Object.

The more specific return type is largely a matter of taste. One might equally well stick to the traditional technique of declaring the return type of
all clone methods as type Object. The more specific return type is beneficial for the users of our triple class, because it saves them a cast from
Object down to Triple<T> after a call to Triple<T>.clone.

"unchecked cast" warnings.

The most annoying aspect of implementing clone for a generic type are the inevitable "unchecked" warnings. The warning stem from two
categories of casts that are needed.

Casting the result of super.clone to the generic type.
Casting the result of cloning any fields to the type that the type parameter stands for.

Casting the result of super.clone to the generic type.

Part of every implementation of clone is the invocation of the superclass's clone method. The result of super.clone is either of the supertype
itself or of type Object. In our example super.clone is Object.clone, whose return type is Object. In order to access the fields of the clone
returned from super.clone a cast to own type is needed. In our example this is a cast to the type Triple<T>. The target type of this cast is the
generic type itself and the compiler issues the usual "unchecked cast" warning.

In some cases the cast is not needed at all, namely when the clone produced by super.clone is already deep enough so that the fields of the clone
need not be accessed. This would be the case if all fields are either of primitive type or of an immutable reference type.

In all other cases, there is no way to avoid the unchecked warning. A cast to Triple<?> instead of Triple<T> would eliminate the unchecked
warning, but does not give the required access to the fields. The two fields in our example would be of type "capture of ?" to which we cannot
assign the result of cloning the individual fields. Alternatively we might consider a cast to the raw type Triple instead of Triple<T>, but that
would give us "unchecked assignment" warnings instead of "unchecked cast" warnings. The compiler would issue the warnings when we access
the fields of our raw triple class. No matter how we put it, we cannot avoid the unchecked warnings the cast after super.clone. The warnings are
harmless and hence best suppressed by means of the standard annotation @annotation.SuppressWarnings.

Cloning the individual fields.

We must invoke the fields' clone method via reflection because we do not know whether the respective field has an accessible clone method. Two
factor play a role:

Every class inherits a clone method from class Object, but Object.clone is a protected method and for this reason not part of the public
interface of a class. In essence, all classes have a clone method, but only a private one, unless they explicitly provide a public clone

method.
Most classes that have a clone method also implement the Cloneable interface. The Cloneable interface is an empty marker interface and
does not mandate that a Cloneable class must have a public clone method. Even if we could sucessfully cast down to Cloneable we would
not have access to a clone method. Hence, for purposes of invoking a clone method the Cloneable interface is totally irrelevant.

In the example we use reflection to find out whether the field has a public clone method. If it has a clone method, we invoke it.

Casting the result of cloning any fields to the type that the type parameter stands for.

If individual fields must be cloned, the clone method of the respective fields' type must be invoked. The result of this invocation of the clone
method is often type Object, so that another cast is necessary. If the field in question has the type that the enclosing class's type parameter stands
for then the target of this cast is the type variable and the compiler issues the usual "unchecked cast" warning. In our example we must clone the
two fields of the unknown type T, which requires that we invoke the field's clone method via reflection. The result of the reflective call is of type
Object and we must cast from Object to the type parameter T. Again, there is no way to avoid the unchecked casts after cloning the fields and
the warnings are best suppressed by means of the standard annotation @annotation.SuppressWarnings.

More "unchecked" warnings.

If a class has fields that are of a parameterized type and these fields must be cloned then a cast from Object to the parameterized type might be
necessary and the compiler issues the usual "unchecked cast" warning.

Example:

class Store {
 private ArrayList<String> store = new ArrayList<String>();
 ...
 public Store clone() {
 Store clon = (Store)super.clone();
 clon.store = (ArrayList<String>)this.store.clone(); // unchecked warning
 }
}

Again there is no chance to avoid the "unchecked cast" warnings and they are best suppressed by means of the standard annotation
@annotation.SuppressWarnings.

The reason for the undesired unchecked warnings in conjunction with the clone method stem from the fact that the clone method is a non-generic
legacy method. In situations where generic and non-generic code is mixed, unchecked warnings cannot be avoided.

Exception Handling.

In the example, we left open how the exceptions from reflective invocation of the members' clone methods should be handled. Should we
suppress the exceptions, or should we map them to a CloneNotSupportedException, or perhaps simply propagate the exceptions to the caller?

Example (excerpt from implementation of clone):

public Triple<T> clone() {
 ...
 try {
 Class<?> clzz = this.fst.getClass();
 Method meth = clzz.getMethod("clone", new Class[0]);
 Object dupl = meth.invoke(this.fst, new Object[0]);
 clon.fst = (T)dupl;
 } catch (Exception e) {
 ... ??? what should be done here ??? ...
 }
 ...
}

Usually, a clone method does not throw any exceptions; at least is does not through a CloneNotSupportedException. The point in implementing
a clone method is to support cloning. Why should a clone method throw a CloneNotSupportedException then? It is equally unusual that a
clone method would throw any other exception, because a class knows its fields and their types well enough to successfully produce a clone of
each field.

For a generic class the situation is more complex. We do not know anything about those fields of the class whose type is a type parameter. In
particular, we do not know whether those fields are Cloneable and/or have a clone method, as was explained above. The attempted invocation of
the members' clone method via reflection bears the risk of failure, indicated by a number of exceptions raised by Class.getMethod and
Method.invoke such as NoSuchMethodException, IllegalArgumentException, etc. In this situation the clone method might in fact fail to
produce a clone and it might make sense to indicate this failure by mapping all (or some) exceptions to a CloneNotSupportedException.

Example (throwing a CloneNotSupportedException):

public Triple<T> clone() throws CloneNotSupportedException{
 ...
 try {
 Class<?> clzz = this.fst.getClass();
 Method meth = clzz.getMethod("clone", new Class[0]);
 Object dupl = meth.invoke(this.fst, new Object[0]);

 clon.fst = (T)dupl;
 } catch (Exception e) {
 throw new CloneNotSupportedException(e.toString());
 }
 ...
}

On the other hand, one might argue that a type that does not have a clone method probably needs no cloning because objects of the type can safely
be referenced from many other objects at the same time. Class String is an example. Class String is neither Cloneable nor has it a clone
method. Class String does not support the cloning feature, because String objects are immutable, that is, they cannot be modified. An
immutable object is never copied, but simply shared among all objects that hold a reference to it. With our exception handling above the clone
method of a Triple<String> would throw a CloneNotSupportedException, which is not quite appropriate. It would be preferable to let the
original triple and its clone hold references to the shared string members.

Example (suppressing the NoSuchMethodException):

public Triple<T> clone() {
 ...
 try {
 Class<?> clzz = this.fst.getClass();
 Method meth = clzz.getMethod("clone", new Class[0]);
 Object dupl = meth.invoke(this.fst, new Object[0]);
 clon.fst = (T)dupl;
 } catch (NoSuchMethodException e) {
 // exception suppressed
 } catch (Exception e) {
 throw new InternalError(e.toString());
 }
 ...
}

In the exception handling suggested above we suppress the NoSuchMethodException under the assumption that an object without a clone method
need not be cloned, but can be shared.

Note, that we cannot ascertain statically by means of type argument bounds, that the members of a triple have a clone method. We could define
the type parameter with Cloneable as a bound, that is, as class Triple<T extends Cloneable>, but that would not avoid any of the issues
discussed above. The Cloneable interface is an empty tagging interface and does not demand that a cloneable type has a clone method. We
would still have to invoke the clone method via reflection and face the exception handling issues as before.

LINK TO THIS Practicalities.FAQ502

REFERENCES What is an "unchecked" warning?
What is the SuppressWarnings annotation?

Using Runtime Type Information

What does the type parameter of class java.lang.Class mean?

The type parameter is the type that the Class object represents, e.g. Class<String> represents String.

An object of type java.lang.Class represents the runtime type of an object. Such a Class object is usually obtained via the getClass method
defined in class Object. Alternative ways of obtaining a Class object representing a certain type are use of a class literal or the static method
forName defined in class Class.

Since Java 5.0 class java.lang.Class is a generic class with one unbounded type parameter. The type parameter is the type that the Class object
represents. For instance, type Number is represented by a Class object of type Class<Number>, type String by a Class object of type
Class<String>, and so forth.

Parameterized types share the same runtime type and as a result they are represented by the same Class object, namely the Class object that
represents the raw type. For instance, all instantiations of List, such as List<Long>, List<String>, List<?>, and the raw type List itself are
represented by the same Class object; this Class object is of type Class<List>.

In general, the type argument of a Class object's type is the erasure of the type that the Class object represents.

Note that the methods Object.getClass and Class.forName return references of a wildcard type. A side effect is that they cannot be assigned to
a Class object of the actual type.

Example (using Class objects):

Number n = new Long(0L);
Class<Number> c1 = Number.class;
Class<Number> c2 = Class.forName("java.lang.Number"); // error
Class<Number> c3 = n.getClass(); // error

The forName method returns a reference of type Class<?>, not of type Class<Number>. Returning an object of any Class type makes sense
because the method can return a Class object representing any type.

The getClass method returns a reference of type Class<? extends X>, where X is the erasure of the static type of the expression on which
getClass is called. Returning Class<? extends X> makes sense because the type X might be a supertype referring to a subtype object. The
getClass method would then return the runtime type representation of the subclass and not the representation of the supertype. In the example
above the reference of type Number refers to an object of type Long, so that the getClass method returns a Class object of type Class<Long>
instead of Class<Number>.

Example (corrected):

Number n = new Long(0L);
Class<Number> c1 = Number.class;
Class<?> c2 = Class.forName("java.lang.Number");
Class<? extends Number> c3 = n.getClass();

The easiest way of passing around type representations is via a reference of type Class<?>.

LINK TO THIS Practicalities.FAQ601

REFERENCES What is type erasure?
How do I pass type information to a method so that it can be used at runtime?

How do I pass type information to a method so that it can be used at runtime?

By means of a Class object.

The type information that is provided by a type parameter is static type information that is no longer available at runtime. When we need type
information that is available at runtime we must explicitly supply the runtime time information to the method. Below are a couple of situations
where the static type information provided by a type parameter does not suffice.

Example (of illegal or pointless use of type parameter):

public static <T> void someMethod() {
 ... new T() ... // error
 ... new T[SIZE] ... // error
 ... ref instanceof T ... // error
 ... (T) ref ... // unchecked warning
 }
}

Utilities.<String>someMethod();

The type parameter T of the method does not provide any type information that would still be accessible at runtime. At runtime the type parameter
is represented by the raw type of it leftmost bound or type Object, if no bound was specified. For this reason, the compiler refuses the accept type
parameters in new expressions, and type checks based on the type parameter are either illegal or nonsensical.

If we really need runtime type information we must pass it to the method explicitly. There are 3 techniques for supplying runtime type information
to a method:

supply an object
supply an array
supply a Class object

The 3 alternative implementations of the method above would look like this:

Example (of passing runtime type information):

public static <T> void someMethod(T dummy) {
 Class<?> type = dummy.getClass();
 ... use type reflectively ...
}
public static <T> void someMethod(T[] dummy) {
 ... use type reflectively ...
 Class<?> type = dummy.getClass().getComponentType();
}
public static <T> void someMethod(Class<T> type) {
 ... use type reflectively ...
 ... (T)type.newInstance() ...

 ... (T[])Array.newInstance(type,SIZE) ...
 ... type.isInstance(ref) ...
 ... type.cast(tmp) ...
}

Utilities.someMethod(new String());
Utilities.someMethod(new String[0]);
Utilities.someMethod(String.class);

The first two alternatives are wasteful, because dummy objects must be created for the sole purpose of supplying their type information. In
addition, the first approach does not work when an abstract class or an interface must be represented, because no objects of these types can be
created.
The second technique is the classic approach; it is the one taken by the toArray methods of the collection classes in package java.util (see
java.util.Collection.toArray(T[])).
The third alternative is the recommended technique. It provides runtime type information by means of a Class object.

Here are the corresponding operations based on the runtime type information from the example above, this time performed using reflection.

Example (of reflective use of runtime type information):

public static <T> void someMethod(Class<T> type) {
 ... (T)type.newInstance() ...
 ... (T[])Array.newInstance(type,SIZE) ...
 ... type.isInstance(ref) ...
 ... type.cast(tmp) ...
}

Examples using class Class to provide type information can be found in the subsequent two FAQ entries (see REFERENCES or click here and here).

LINK TO THIS Practicalities.FAQ602

REFERENCES What does the type parameter of class java.lang.Class mean?
How do I generically create objects and arrays?
How do I perform a runtime type check whose target type is a type parameter?

How do I generically create objects and arrays?

Using reflection.

The type information that is provided by a type parameter is static type information that is no longer available at runtime. It does not permit
generic creation of objects or arrays.

Example (of failed generic array creation based on static type information):

class Utilities {
 private static final int SIZE = 1024;

 public static <T> T[] createBuffer() {
 return new T[SIZE]; // error
 }
}
public static void main(String[] args) {
 String[] buffer = Utilities.<String>createBuffer();
}

The type parameter T of method createBuffer does not provide any type information that would still be accessible at runtime. At runtime the
type parameter is represented by the raw type of it leftmost bound or type Object, if no bound was specified. For this reason, the compiler refuses
the accept type parameters in new expressions.

If we need to generically create an object or array, then we must pass type information to the createBuffer method that persists until runtime.
This runtime type information can then be used to perform the generic object of array creation via reflection. The type information is best supplied
by means of a Class object. (A Class object used this way is occasionally called a type token.)

Example (of generic array creation based on runtime type information):

public static <T> T[] createBuffer(Class<T> type) {
 return (T[])Array.newInstance(type,SIZE);
}
public static void main(String[] args) {
 String[] buffer = Utilities.createBuffer(String.class);
}

Note that the parameterization of class Class allows to ensure at compile time that no arbitrary types of Class objects are passed to the
createBuffer method. Only a Class object that represents a runtime type that matches the desired component type of the created array is

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html#toArray%28T%5B%5D%29

permitted.

Example:

String[] buffer = Utilities.createBuffer(String.class);
String[] buffer = Utilities.createBuffer(Long.class); // error
Number[] buffer = Utilities.createBuffer(Long.class);

Note also, that arrays of primitive type elements cannot be created using the aforementioned technique.

Example (of a failed attempt to create an array of primitive type):

class Utilities {
 @SuppressWarnings("unchecked")
 public static <T> T[] slice(T[] src, Class<T> type, int start, int length) {
 T[] result = (T[])Array.newInstance(type,length);
 System.arraycopy(src, start, result, 0, length);
 return result;
 }
}
class Test {
 public static void main(String[] args) {
 double[] avg = new double[]{1.0, 2.0, 3.0};
 double[] res = Utilities.slice(avg, double.class, 0, 2); // error
 }
}

error: <T>slice(T[],java.lang.Class<T>,int,int) cannot be applied to
(double[],java.lang.Class<java.lang.Double>,int,int)
 double[] res = Utilities.slice(avg, double.class, 0, 2);
 ^

Since primitive types are not permitted as type arguments, we cannot invoke the slice method using double.class as the type token. The
compiler would have to infer T:=double, which is not permitted because double is a primitive type and cannot be used as the type argument of a
generic method. The slice method can only create arrays of reference type elements, which means that we have to convert back and forth
between double[] and Double[] in the example.

Example (of a successful attempt to create an array of reference type):

class Test {
 public static void main(String[] args) {
 double[] avg = new double[]{1.0, 2.0, 3.0};
 Double[] avgdup = new Double[avg.length];
 for (int i=0; i<avg.length;i++) avgdup[i] = avg[i]; // auto-boxing
 Double[] tmp = Utilities.slice(avgdup, Double.class, 0, 2); // fine
 avg = new double[tmp.length];
 for (int i=0; i<tmp.length;i++) avg[i] = tmp[i]; // auto-unboxing
 }
}

LINK TO THIS Practicalities.FAQ603

REFERENCES What does the type parameter of class java.lang.Class mean?
How do I pass type information to a method so that it can be used at runtime?
Are primitive types permitted as type arguments?

How do I perform a runtime type check whose target type is a type parameter?

Using reflection.

The type information that is provided by a type parameter is static type information that is no longer available at runtime. It does not permit any
generic type checks.

Consider a method that is supposed to extract from a sequence of objects of arbitrary types all elements of a particular type. Such a method must at
runtime check for a match between the type of each element in the sequence and the specific type that it is looking for. This type check cannot be
performed by means on the type parameter.

Example (of failed generic type check based on static type information):

class Utilities {
 public static <T> Collection<T> extract(Collection<?> src) {
 HashSet<T> dest = new HashSet<T>();
 for (Object o : src)

 if (o instanceof T) // error
 dest.add((T)o); // unchecked warning
 return dest;
 }
}
public static void test(Collection<?> coll) {
 Collection<Integer> coll = Utilities.<Integer>extract(coll);
}

Type parameters are not permitted in instanceof expressions and the cast to the type parameter is nonsensical, because it is a cast to type Object
after type erasure.

For a type check at runtime we must explicitly provide runtime type information so that we can perform the type check and cast by means of
reflection. The type information is best supplied by means of a Class object.

Example (of generic type check based on runtime type information):

class Utilities {
 public static <T> Collection<T> extract(Collection<?> src, Class<T> type) {
 HashSet<T> dest = new HashSet<T>();
 for (Object o : src)
 if (type.isInstance(o))
 dest.add(type.cast(o));
 return dest;
 }
}
public static void test(Collection<?> coll) {
 Collection<Integer> coll = Utilities.extract(coll,Integer.class);
}

LINK TO THIS Practicalities.FAQ604

REFERENCES What does the type parameter of class java.lang.Class mean?
How do I pass type information to a method so that it can be used at runtime?

Reflection

Which information related to generics can I access reflectively?

The exact static type information, but only inexact dynamic type information.

Using the reflection API of package java.lang.reflect you can access the exact declared type of fields, method parameters and method return
values. However, you have no access to the exact dynamic type of an object that a reference variable refers to.

Below are a couple of examples that illustrate which information is available by means of reflection. Subsequent FAQ entries discuss in greater
detail the ways and means of extracting the information. Here is the short version of how the static and dynamic type information is retrieved
reflectively.

For illustration, we consider the field of a class:

Example (of a class with a field):

class SomeClass {
 static Object field = new ArrayList<String>();
 ...
}

The information regarding the declared type of a field (static type information) can be found like this:

Example (find declared type of a field):

class Test {
 public static void main(String[] args) {
 Field f = SomeClass.class.getDeclaredField("field");
 Type t = f.getGenericType();
 }
}

In order to retrieve the declared type of a field you need a representation of the field in question as an object of type java.lang.reflect.Field.
Such a representation can be found by invoking either the method getField() or getDeclaredField() of class java.lang.Class. Class
java.lang.reflect.Field has a method named getGenericType(); it returns an object of type java.lang.reflect.Type, which represents the
declared type of the field.

The information regarding the type of the object that a reference refers to (dynamic type information) can be found like this:

Example (find actual type of a field):

class Test {
 public static void main(String[] args) {
 Class<?> c = SomeClass.field.getClass();
 }
}

In order to retrieve the actual type of an object you need a representation of its type as an object of typejava.lang.Class. This type
representation can be found by invoking the method getClass() of class java.lang.Object.

In the example above, the field SomeClass.field is declared as a field of type Object; for this reason Field.getGenericType() yields the type
information Object. This is the static type information of the field as declared in the class definition.

At runtime the field variable SomeClass.field refers to an object of any subtype of Object. The actual type of the referenced object is retrieved
using the object's getClass() method, which is defined in class Object. If the field refers to an object of type ArrayList<String> then
getClass() yields the raw type information ArrayList, but not the exact type information ArrayList<String>.

The table below shows further examples of the type information that is available for the field of a class using Field.getGenericType() and
Object.getClass().

Declaration of Field
(retrieved via Class.getField())

Static Type Information
(retrieved via Field.getGenericType())

Dynamic Type Information
(retrieved via Object.getClass())

class SomeClass {
 Object field
 = new ArrayList<String>();
 ...
}

Object regular type ArrayList generic type

class SomeClass {
 List<String> field
 = new ArrayList<String>();
 ...
}

List<String> parameterized type ArrayList generic type

class SomeClass {
 Set<? extends Number> field
 = new TreeSet<Long>();
 ...
}

Set<? extends Number> parameterized type TreeSet generic type

class SomeClass<T> {
 T field;
 SomeClass(T t) { field = t; }
 ...
}
SomeClass<CharSequence> object
= new SomeClass<CharSequence>("a");

T type variable String non-generic type

class SomeClass {
 Iterable<?>[] field
 = new Collection<?>[0];
 ...
}

Iterable<?>[] generic array type [LCollection non-generic type

class SomeClass<T> {
 T[] array;
 SomeClass(T... arg) { array = arg; }
 ...
}
SomeClass<String> object
= new SomeClass<String>("a");

T[] generic array type [LString non-generic type

LINK TO THIS Practicalities.FAQ701

REFERENCES java.lang.reflect.Field.getGenericType()
java.lang.Object.getClass()

How do I retrieve an object's actual (dynamic) type?

By calling its getClass() method.

When you want to retrieve an object's actual type (as opposed to its declared type) you use a reference to the object in question and invoke its
getClass() method.

Example (of retrieving an object's actual type):

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Field.html#getGenericType()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#getClass()

class Test {
 public static void main(String[] args) {
 Object tmp = java.util.EnumSet.allOf(java.util.concurrent.TimeUnit.class);
 Class<?> clazz = tmp.getClass();
 System.out.println("actual type of Object tmp is: "+clazz);
 }
}

actual type of Object tmp is: class java.util.RegularEnumSet

The actual type of the object that the local tmp variable refers to is unknown at compile time. It is some class type that extends the abstract
EnumSet class; we do not know which type exactly. It turns out that in our example the actual type is java.util.RegularEnumSet, which is an
implementation specific class type defined by the JDK implementor. The class is a private implementation detail of the JDK and is not even
mentioned in the API description of the java.util package. Nonetheless the virtual machine can retrieve the actual type of the object via
reflection by means of the getClass() method.

In contrast, the declared type of the object in question is type Object, because the reference variable tmp is of type Object.

In this example the declared type is not available through reflection, because tmp is a local variable. The declared type is available reflectively
solely for fields of types, and for return types or parameter types or exception types of methods. The actual type of an object, however, can be
retrieved for all objects regardless of their declaration: for local variables, fields of classes, return types of methods, arguments passed to method,
etc.

The getClass() method of class Object returns an object of type java.lang.Class, which means that the actual type of each object is
represented by a Class object. You can extract various information about the type represented by the Class object, such as "is it a primitive type?
", "is it an array type?", "is it an interface, or a class, or an enum type?", "which fields does the type have?", "which methods does the type have?
", etc. You can additionally find out whether the Class object represents a generic type by asking it: "does it have type parameters?".

LINK TO THIS Practicalities.FAQ702

REFERENCES How do I figure out whether a type is a generic type?
What is a parameterized or generic type?
How do I retrieve an object's declared type?
java.lang.Class

How do I retrieve an object's declared (static) type?

By finding the declaration's reflective representation and calling the appropriate getGeneric...() method.

When you want to retrieve an object's declared type (as opposed to its actual type) you first need a representation of the declaration.

Field. For a field of a type you need a representation of that field in terms of an object of type java.lang.reflect.Field. This can be
obtained by one of the methods getField(), getFields(), getDeclaredField(), or getDeclaredFields() of class Class.
Return Value. For the return value of a method you need a representation of the method in terms of an object of type
java.lang.reflect.Method. This can be obtained by one of the methods getMethod(), getMethods(), getDeclaredMethod(), or
getDeclaredMethods() of class Class. Then you invoke the getGenericReturnType() method of class Method.
Method Parameter. Same as for the return value. Once you have a representation of the method, you invoke the
getGenericParameterTypes() method of class Method.
Method Exceptions. Same as for the return value. Once you have a representation of the method, you invoke the
getGenericExceptionTypes() method of class Method.

Note, that there is no representation of the declaration of a local variable on the stack of a method. Only the declarations of fields declared in
classes, interfaces or enumeration types, and return types, parameter types, and exception types of methods have a reflective representation.

Example (of retrieving a field's declared type):

class Test {
 private static EnumSet<TimeUnit> set = EnumSet.allOf(TimeUnit.class);

 public static void main(String[] args) {
 Field field = Test.class.getDeclaredField("set");
 Type type = field.getGenericType();
 System.out.println("declared type of field set is: "+type);
 }
}

declared type of field set is: java.util.EnumSet<java.util.concurrent.TimeUnit>

The declared return type, argument type, or exception type of a method is retrieved similarly by invoking the corresponding getGeneric...Type()
method.

All these methods return an object of type java.reflect.Type, which means that the declared type of an object is represented by a Type object.
Type

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html

is an interface and represents all type-like constructs in Java reflection. It has five subtypes, as shown in the subsequent diagram.

Figure: Subtypes of Interface java.lang.reflect.Type

As you can tell from the diagram, class Class is a subtype of interface Type, but it is not the only subtype. A Type can represent one of the
following type-like things:

A regular type. In this case the Type variable refers to a Class object. Examples of regular types are non-generic types such String or
CharSequence, enumeration types such as TimeUnit, array types with regular component types such as String[] (but not Class<?>[],
because the component type is a parameterized type), and raw types such as List or Set. In other words, a regular type is a type that has
nothing to do with generics.
A parameterized type. In this case the Type variable refers to an object of the subtype ParameterizedType. Examples of parameterized
types are List<String> or Set<? extends Number> or Iterator<E>, that is, all types that are instantiations of generic types and have type
arguments.
A type variable. In this case the Type variable refers to an object of the subtype TypeVariable. Examples of type variabes are T, E, K, V,
that is, the type parameters of generic types and generic methods.
A generic array type. In this case the Type variable refers to an object of the subtype GenericArrayType. Examples of generic array types
are Class<?>[] or T[] or Future<Object>[]or Iterator<?>[][], that is, all array types with a non-regular component type.
A wildcard type. In this case the Type variable refers to an object of the subtype WildcardType. Examples of wildcard types are ? or ?
extends Number or ? super T, that is, all wildcard expressions. If you retrieved the declared type of a field or the return type, argument
type or exception type of a method, the resulting Type variable can never refer to a WildcardType, because wildcards are not types; they can
only be used as type arguments. Hence, the subtype's name "wildcard type" is slightly misleading. Only when you retrieve the type
argument of a parameterized type you might come across a Type variable that refers to a WildcardType. This would, for instance, happen if
you ask for the type argument of the type Class<?>.

Extracting information from the Type object returned by Field.getGenericType() or a similar method is not as easy as it is to retrieve
information from a Class object. When you have a Class variable you simply invoke methods of class Class. When you have a Type variable
you cannot invoke any methods, because the Type interface is an empty interface. Before you can extract any information you must figure out to
which of the 5 subtypes discussed above the Type variable refers. This is usually done by a cascade of instanceof tests.

Example (of analyzing java.lang.reflect.Type):

void analyzeType(Type type) {
 if (type instanceof Class) {
 // regular type, e.g. String or Date[]
 } else if (type instanceof ParameterizedType) {
 // parameteriezd type, e.g. List<String> or Set<? extends Number>
 } else if (type instanceof TypeVariable) {
 // type variable, e.g. T
 } else if (type instanceof GenericArrayType) {
 // generic array, e.g. List<?>[] or T[]
 } else if (type instanceof WildcardType) {
 // wildcard, e.g. ? extends Number or ? super Long
 } else {
 // we should never get here
 throw new InternalError("unknown type representation "+type);
 }
}

Once you know what subtype of type Type the variable refers to, you simply cast down to the respective subtype and start retrieving information
by invocation of the subtype's methods. Just browse the respective type's JavaDoc; most methods are self-explanatory. Here are some examples:

If it is a Class then you can pose the usual questions such as "are you a primitive type?", "are you an array type?", "are you an interface, or
a class, or an enum type?", "which fields do you have?", "which methods do you have?", "do you have type parameters?", etc.

If it is a ParameterizedType you can ask "what type arguments do you have?", "what is your raw type?", etc.
If it is a TypeVariable you can ask "which bounds do you have?", "which generic type do you belong to?", etc.
If it is a GenericArrayType you can ask "what is your component type?".
If it is a WildcardType you can as "what is your upper and lower bound?".

LINK TO THIS Practicalities.FAQ703

REFERENCES How do I retrieve an object's actual type?
java.lang.reflect.Type

What is the difference between a generic type and a parameterized type in reflection?

A generic type is represented by a Class object; a parameterized type is represented by a ParameterizedType object.

Generic and parameterized types are easily confused when you access them via reflection.

We say that a type is a generic type (as opposed to non-generic type) when it declares formal type parameters, that is, placeholders that can
be replaced by type arguments. For instance, java.util.List is a generic type because it is declared as interface List<E> { ... }and
has one type parameter E. In contrast, class java.util.Date is a non-generic type, because it is a plain, regular class type that does have
formal type parameters.

We talk of a parameterized type (as opposed to a raw type) when we mean an instantiation of a generic type where the formal type
parameters are replaced by actual type arguments. For instance, List<String> is a parameterized type where the type parameter E is
replaced by String. In constrast, List is a raw type. The same is true for Date.

In order to illustrate the difference between generic and parameterized type, let us consider an example. Say, we want to retrieve the declared and
actual type of the private field header of class java.util.LinkedList. The field is declared as follows:

public class LinkedList<E> {
 private transient Entry<E> header = new Entry<E>(null, null, null);
 ...
 private static class Entry<T> { ... }
}

where Entry is a nested generic type defined in class LinkedList and E is the LinkedList 's type parameter.

The header field's declared type is Entry<E> and its actual type is Entry. This might be confusing at first sight, because the header field is
declared as field of type Entry<E> and it actually refers to an object of type Entry<E>. However, due to type erasure, actual types are always raw
types, because type erasure drops all information regarding type arguments. This mismatch between declared type and actual type adds to the
confusion regarding the distinction between parameterized and generic types.

In our example, the header field's declared type is Entry<E> and Entry<E> is a parameterized type (as opposed to a raw type). This is because
Entry<E> is an instantiation of the generic type Entry rather than the raw type Entry.
The header field's actual type is the raw type Entry (as a side effect of type erasure) and Entry is a generic type (as opposed to a non-generic
type). This is because class Entry has a formal type parameter T.

Declaration of Field
(retrieved via Class.getField())

Static Type Information
(retrieved via Field.getGenericType())

Dynamic Type Information
(retrieved via Object.getClass())

public class LinkedList<E> {
 private transient Entry<E> header
 = new Entry<E>(null, null, null);
 ...
 private static class Entry<T> { ... }
}

Entry<E> parameterized type Entry generic type

Let us consider another example. Say, we want to retrieve the declared and actual type of the public field EMPTY_LIST of class Collections. The
field is declared as follows:

public class Collections {
 public static final List EMPTY_LIST = new EmptyList();
 ...
 private static class EmptyList extends AbstractList<Object> { ... }
}

where EmptyList is a nested type defined in class Collections.

The EMPTY_LIST field's declared type is List and its actual type is LinkedList.EmptyList.

The EMPTY_LIST field's declared type List is not a parameterized type, because it does not have any type arguments; it is a raw type. In turn, the
raw type List is a generic type, because interface List has a formal type parameter E.
The EMPTY_LIST field's actual type LinkedList.EmptyList is a non-generic type (as opposed to a generic type), because it does not have any
formal type parameters; it is just a plain, regular class type.

Declaration of Field Static Type Information Dynamic Type Information

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html

(retrieved via Class.getField()) (retrieved via Field.getGenericType()) (retrieved via Object.getClass())
public class Collections {
 public static final List EMPTY_LIST
 = new EmptyList();
 ...
 private static class EmptyList
 extends AbstractList<Object> { ... }
}

List regular (raw) type EmptyList non-generic type

The starting point for retrieving information regarding parameterized and generic types is different. Being generic or non-generic is a property of a
type that is represented by a Class object. In contrast, whether a type is parameterized or raw is a property of a type represented by a Type object.
As a result, we need a Class object to distinguish between generic or non-generic and we need a Type object to distinguish between
parameterized and raw.

The method below distinguishes between a parameterized and a raw type. It needs a Type object for this distinction.

Example (of distinction between parameterized and raw type):

static boolean isParameterizedType(Type type) {
 if (type instanceof ParameterizedType)
 return true;
 else
 return false;
}

The methods below distinguish between a generic and a non-generic type. The distinction regarding generic and non-generic requires a Class
object.

Example (of distinction between generic and non-generic type):

static boolean isGenericType(Class<?> clazz) {
 TypeVariable<?>[] params = clazz.getTypeParameters();
 if (params != null && params.length > 0) {
 return true;
 }
 else {
 return false;
 }
}
static boolean isGenericType(Type type) {
 if (type instanceof Class && isGenericType((Class<?>)type))
 return true;
 else
 return false;
}

The overloaded version of the method that takes a Type object delegates to the other version of the method that takes a Class object, because only
Class objects provide the information whether the type in question has type parameters (i.e. is generic), or not.

LINK TO THIS Practicalities.FAQ704

REFERENCES What is a parameterized or generic type?
Which information related to generics can I access reflectively?
What is type erasure?
How do I figure out whether a type is a generic type?
Which information is available about a generic type?
How do I figure out whether a type is a parameterized type?
Which information is available about a parameterized type?

How do I figure out whether a type is a generic type?

By asking it whether it has type parameters.

When you have the type representation of a type in form of a Class object then you can find out whether the type represents a generic type by
retrieving its type parameters. If it does not have any type parameters then the type is a non-generic type, otherwise it is a generic type. Here is
an example:

Example (of distinction between generic and non-generic type):

Object object = new LinkedHashMap<String,Number>();
Class<?> clazz = object.getClass();
TypeVariable<?>[] params = clazz.getTypeParameters();
if (params != null && params.length > 0) {
 System.out.println(clazz + " is a GENERIC TYPE");
 // generic type, e.g. HashSet

}
else {
 System.out.println(clazz + " is a NON-GENERIC TYPE");
 // non-generic type, e.g. String
}

class java.util.LinkedHashMap is a GENERIC TYPE

We obtain the Class object by calling the getClass() of an object. The Class object represents the type LinkedHashMap in our example. Note
that getClass() returns the actual dynamic type of an object and the actual dynamic type is always a raw type because of type erasure.

Then we retrieve the type parameters by callling getTypeParameters(). If type parameters are returned then the type is a generic type, otherwise
it is non-generic.

LINK TO THIS Practicalities.FAQ705

REFERENCES What is a parameterized or generic type?
What is the difference between a generic type and a parameterized type in reflection?

Which information is available about a generic type?

All the information that is available for regular types plus information about the generic type's type parameters.

A generic type is represented by a Class object. For this reason we can retrieve all the information about a generic type that is also available for
regular non-generic types, such as fields, methods, supertypes, modifiers, annotations, etc. Different from a non-generic type a generic type has
type parameters. They can be retrieved by means of the getTypeParameters() method.

Let us take a look at an example, namely the generic class EnumSet<E extends Enum<E>>.

Example (of retrieving information about a generic type):

Object object = new EnumMap<TimeUnit,Number>(TimeUnit.class);
Class<?> clazz = object.getClass();
TypeVariable<?>[] params = clazz.getTypeParameters();
if (params != null && params.length > 0) {
 System.out.println(clazz + " is a GENERIC TYPE with "+params.length+" type parameters");
 System.out.println();

 for (TypeVariable<?> typeparam : params) {
 System.out.println("\t"+typeparam);
 }
}
else {
 System.out.println(clazz + " is a NON-GENERIC TYPE");
}

class java.util.EnumMap is a GENERIC TYPE with 2 type parameters
TYPE PARAMETERS:
 K
 V

LINK TO THIS Practicalities.FAQ706

REFERENCES How do I figure out whether a type is a generic type?
Which information is available about a type parameter?
java.lang.Class
java.lang.reflect.GenericDeclaration
java.lang.reflect.Type
java.lang.reflect.TypeVariable

How do I figure out whether a type is a parameterized type?

By asking whether the type representation is a ParameterizedType.

When you have the type representation of a type in form of a Type object then you can find out whether the type represents a parameterized type
(as opposed to a raw type) by checking whether the type representation refers to an object of a type that implements the ParameterizedType
interface. Here is an example:

Example (of distinction between parameterized and regular (raw) type):

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/GenericDeclaration.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/TypeVariable.html

Method method = EnumSet.class.getMethod("clone");
System.out.println("METHOD: "+method.toGenericString());
Type returnType = method.getGenericReturnType();
if (returnType instanceof ParameterizedType) {
 System.out.println(returnType + " is a PARAMETERIZED TYPE");
} else if (returnType instanceof Class) {
 System.out.println(returnType + " is a RAW TYPE");
} else {
 System.out.println(returnType + " is something else");
}

METHOD: public java.util.EnumSet<E> java.util.EnumSet.clone()
java.util.EnumSet<E> is a PARAMETERIZED TYPE

First we retrieve the declared return type of the clone() method of class EnumSet. by calling the getGenericReturnType() method of class
java.lang.reflect.Method. The resulting Type object represents the clone() method's return type, which in our example is EnumSet<E>. Then
we verify that the return type is a parameterized type by means of an instanceof test.

LINK TO THIS Practicalities.FAQ707

REFERENCES Which information is available about a parameterized type?

Which information is available about a parameterized type?

Information about the parameterized type's type arguments, its corresponding raw type, and its enclosing type if it is a nested type or inner
class.

A parameterized type is represented by a ParameterizedType object. A parameterized type has actual type arguments, a corresponding raw type,
and you can find out which enclosing type the parameterized type belongs to if it a nested type or inner class.

Let us take a look at an example, namely the parameterized type EnumMap<K,V> , which we retrieve as the return type of the clone() method of
class EnumMap..

Example (of retrieving information about a parameterized type):

Method method = EnumMap.class.getMethod("clone");
System.out.println("METHOD: "+method.toGenericString());
Type returnType = method.getGenericReturnType();

if (returnType instanceof ParameterizedType) {
 System.out.println(returnType + " is a PARAMETERIZED TYPE");

 ParameterizedType type = (ParameterizedType) returnType;

 Type rawType = type.getRawType();
 System.out.println("raw type : " + rawType);

 Type ownerType = type.getOwnerType();
 System.out.println("owner type: " + ownerType
 + ((ownerType != null) ? "" : ", i.e. is a top-level type"));

 Type[] typeArguments = type.getActualTypeArguments();
 System.out.println("actual type arguments: ");
 for (Type t : typeArguments)
 System.out.println("\t" + t);
}

METHOD: public java.util.EnumMap<K, V> java.util.EnumMap.clone()
java.util.EnumMap<K, V> is a PARAMETERIZED TYPE
raw type : class java.util.EnumMap
owner type: null, i.e. is a top-level type
actual type arguments:
 K
 V

LINK TO THIS Practicalities.FAQ708

REFERENCES How do I figure out whether a type is a parameterized type?
java.lang.reflect.ParameteriezedType

How do I retrieve the representation of a generic method?

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/ParameterizedType.html

By retrieving the type erasure of the generic method.

Generic methods are retrieved like non-generic methods: the getMethod() method of class Class is invoked providing a description of the
method's type signature, that is, the name of the method and the raw types of the parameter types. What we supply is a description of the method's
type erasure; we need not specify in any way, that the method is a generic method.

As an example let us retrieve the representation of the generic toArray() method of interface Collection. It is declared as:

interface Collection<E> {
 ...
 <T> T[] toArray(T[] a) { ... }
}

Example (of retrieving the representation of a generic method):

Method method = Collection.class.getMethod("toArray",Object[].class);
System.out.println("METHOD: "+method.toGenericString());

METHOD: public abstract <T> T[] java.util.Collection.toArray(T[])

Note, that we did not mention whether we are looking for a generic or a non-generic method. We just supplied the method name "toArray" and
specified its parameter type as Object[], which is the type erasure of the declared parameter type T[].

Note, that there is some minor potential for confusion regarding the method description that is delivered by the resulting Method object. In the
example above, we retrieved the method description using the toGenericString() method of class Method.

System.out.println("METHOD: "+method.toGenericString());

METHOD: public abstract <T> T[] java.util.Collection.toArray(T[])

It describes the generic method's signature including information regarding its type parameter T. Had we used the toString() method instead,
the resulting method description had described the type erasure of the method.

System.out.println("METHOD: "+method.toString());

METHOD: public abstract java.lang.Object[] java.util.Collection.toArray(java.lang.Object[])

The confusing element here is the fact that toString() does not deliver a description of the method as it is declared, but of its type erasure.

LINK TO THIS Practicalities.FAQ709

REFERENCES How do I figure out whether a method is a generic method?
What is a generic declaration?

How do I figure out whether a method is a generic method?

By asking it whether it has type parameters.

Starting with the reflective representation of a method in form of a Method object you can find out whether the method is generic or non-generic
by retrieving its type parameters. (Note, we are looking for type parameters, not method parameters.) If the method does not have any type
parameters then it is a non-generic method, otherwise it is a generic method. Here is an example:

Example (of distinction between generic and non-generic method):

Method method = Collection.class.getMethod("toArray",Object[].class);
TypeVariable[] typeParams = method.getTypeParameters();
if (typeParams!=null && typeParams.length>0) {
 System.out.println(method.getName()+" is a GENERIC METHOD");
} else {
 System.out.println(method.getName() +" is a NON-GENERIC METHOD");
}

toArray is a GENERIC METHOD

We obtain the Method object by calling the getMethod() method of the Class object that represents the type whose method we are looking for. In
our example the Method object represents the generic toArray() of interface Collection.

Then we retrieve the type parameters by callling getTypeParameters(). If type parameters are returned then the method is a generic method,
otherwise it is non-generic.

LINK TO THIS Practicalities.FAQ710

REFERENCES

Which information is available about a generic method?
How do I figure out whether a type is a generic type?
What is a generic declaration?

Which information is available about a generic method?

All the information that is available for regular methods plus information about the generic method's type parameters.

A generic method is represented by a Method object. For this reason we can retrieve all the information about a generic method that is also
available for regular non-generic methods, such as return type, method parameter types, exception types, declaring class, modifiers, annotations,
etc. Different from a non-generic method a generic method has type parameters. They can be retrieved by means of the getTypeParameters()
method. Type parameters are represented by TypeVariable objects.

Let us take a look at an example, namely the generic method
<T extends Object & Comparable<? super T>> T Collections.max(Collection<? extends T>).

Example (of retrieving information about a generic method):

Method theMethod = Collections.class.getMethod("max",Collection.class);
System.out.println("analyzing method: ");
System.out.println(theMethod.toGenericString()+"\n");

TypeVariable[] typeParams = theMethod.getTypeParameters();
if (typeParams!=null && typeParams.length>0) {
 System.out.println("GENERIC METHOD");
 System.out.println("type parameters: ");
 for (TypeVariable v : typeParams) {
 System.out.println("\t"+v);
 }
} else {
 System.out.println("NON-GENERIC METHOD");
}
System.out.println();

Type type = theMethod.getGenericReturnType();
System.out.println("generic return type of method "+theMethod.getName()+": " + type);
System.out.println();

Type[] genParamTypes = theMethod.getGenericParameterTypes();
if (genParamTypes == null || genParamTypes.length == 0) {
 System.out.println("no parameters");
} else {
 System.out.println("generic parameter types: ");
 for (Type t : genParamTypes) {
 System.out.println("\t"+t);
 }
}
System.out.println();

Type[] genExcTypes = theMethod.getGenericExceptionTypes();
if (genExcTypes == null || genExcTypes.length == 0) {
 System.out.println("no exceptions");
} else {
 System.out.println("generic exception types: ");
 for (Type t : genExcTypes) {
 System.out.println("\t"+t);
 }
}

analyzing method:
public static <T> T java.util.Collections.max(java.util.Collection<? extends T>)

GENERIC METHOD
type parameters:
 T

generic return type of method max: T

generic parameter types:
 java.util.Collection<? extends T>

no exceptions

Do not confuse getParameterTypes() with getTypeParameters(). The methods getParameterTypes() and getGenericParameterTypes()
return the types of the method parameters; in our example the type Collection<? extends T>. The method getTypedParameters() returns a
generic method's type parameters; in our example the type parameter T.

LINK TO THIS Practicalities.FAQ711

REFERENCES How do I figure out whether a method is a generic method?
What is a generic declaration?
java.lang.reflect.Method
Which information is available about a type parameter?

Which information is available about a type parameter?

The type parameter's name, its bounds, and the generic type or method that the type parameter belongs to.

Type parameters of generic types and methods are represented by TypeVariable objects. A type parameter has a name, bounds, and you can find
out which generic type or method the type parameter belongs to.

Let us take a look at an example, namely the type parameter of the generic class EnumSet<E extends Enum<E>>.

Example (of retrieving information about a generic type):

Object object = new EnumMap<TimeUnit,Number>(TimeUnit.class);
Class<?> clazz = object.getClass();
TypeVariable<?>[] params = clazz.getTypeParameters();
if (params != null && params.length > 0) {
 System.out.println(clazz + " is a GENERIC TYPE with "+params.length+" type parameters");
 System.out.println();

 for (TypeVariable<?> typeparam : params) {
 System.out.println(typeparam + " is a TYPE VARIABLE");
 System.out.println("name : " + typeparam.getName());

 GenericDeclaration genDecl = typeparam.getGenericDeclaration();
 System.out.println("is type parameter of generic declaration: " + genDecl);

 Type[] bounds = typeparam.getBounds();
 System.out.println("bounds: ");
 for (Type bound : bounds)
 System.out.println("\t" + bound + "\n");
 System.out.println();
 }
 }
 else {
 System.out.println(clazz + " is a NON-GENERIC TYPE");
 }

class java.util.EnumMap is a GENERIC TYPE with 2 type parameters

K is a TYPE VARIABLE
name : K
is type parameter of generic declaration: class java.util.EnumMap
bounds:
 java.lang.Enum<K>

V is a TYPE VARIABLE
name : V
is type parameter of generic declaration: class java.util.EnumMap
bounds:
 class java.lang.Object

LINK TO THIS Practicalities.FAQ712

REFERENCES How do I figure out whether a method is a generic method?
What is a generic declaration?
java.lang.reflect.Method

What is a generic declaration?

Either a generic type or a generic method or a generic constructor.

In Java reflection a generic declaration is something that has type parameters, that is, either a generic type or a generic method or a generic
constructor. A generic declaration is represented by the interface GenericDeclaration from the java.lang.reflect package. It provides access
to the getTypeParameters() method, which is used to retrieve the type parameters of generic types, methods and constructors. Consequently, the
classes Class, Method and Constructor implement this interface.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Method.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Method.html

Figure: Subtypes of Interface java.lang.reflect.GenericDeclaration

LINK TO THIS Practicalities.FAQ713

REFERENCES How do I figure out whether a method is a generic method?
java.lang.reflect.GenericDeclaration
java.lang.Class
java.lang.reflect.Method
java.lang.reflect.Constructor

What is a wildcard type?

A wildcard expression; it appears as the type argument of a parameterized type.

In Java reflection a wildcard type is a wildcard expression such as "? extends Number". It is represented by an object of type
java.lang.reflect.WildcardType and can appear solely as a type argument of a parameterized type. The term "wildcard type" is slightly
misleading, because a wildcard is not a type like the return type of a method or the type of a field. More correctly it is a type argument of a
parameterized type.

Let us take a look at an example, namely the wildcards that appear in the signature of the generic method

<T extends Object & Comparable<? super T>> T Collections.max(Collection<? extends T>).

The first wildcard appears in the bounds of the method's type parameter T; its second bound is Comparable<? super T>, which is a parameterized
type, and its type argument is the wildcard "? super T". The second wildcard appears in the method's declared argument type Collection<?
extends T>, which is a parameterized type, and its type argument is the wildcard "? extends T".

Here is how the wildcard in the bound is retrieved:

Example (of a wildcard in Java reflection):

Method method = Collections.class.getMethod("max",Collection.class);
System.out.println("METHOD: "+method.toGenericString());

TypeVariable<Method> typeParameter = method.getTypeParameters()[0];
System.out.println("TYPE PARAMETER: "+typeParameter);

ParameterizedType bound = (ParameterizedType)typeParameter.getBounds()[1];
System.out.println("TYPE PARAMETER BOUND: "+bound);

WildcardType wildcard = (WildcardType)bound.getActualTypeArguments()[0];
System.out.println("WILDCARD: "+wildcard);

METHOD: public static <T> T java.util.Collections.max(java.util.Collection<? extends T>)
TYPE PARAMETER: T
TYPE PARAMETER BOUND: java.lang.Comparable<? super T>
WILDCARD: ? super T

We retrieve the method Collections.max via Class.getMethod() and its type parameter T via GenericDeclaration.getTypeParameters().
The result is the representation of the generic method`s type parameter T as an object of type java.lang.reflect.TypeVariable. We retrieve
the type variable's two bounds via TypeVariable.getBounds() . The second bound is Comparable<? super T> and it is represented by an object
of type java.lang.reflect.ParameterizedType. We retrieve its type argument ? super T via ParameterizedType.getActualTypeArguments()
and check whether the type argument is a wildcard expression by checking whether it is represented by an object of type
java.lang.reflect.WildcardType.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/GenericDeclaration.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Method.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Constructor.html

Here is how the wildcard in the declared method parameter type is retrieved:

Example (of a wildcard in Java reflection):

Method method = Collections.class.getMethod("max",Collection.class);
System.out.println("METHOD: "+method.toGenericString());

ParameterizedType methodParameterType = (ParameterizedType)method.getGenericParameterTypes()[0];
System.out.println("METHOD PARAMETER TYPE: "+methodParameterType);

WildcardType wildcard = (WildcardType)methodParameterType.getActualTypeArguments()[0];
System.out.println("WILDCARD: "+wildcard);

METHOD: public static <T> T java.util.Collections.max(java.util.Collection<? extends T>)
METHOD PARAMETER TYPE: java.util.Collection<? extends T>
WILDCARD: ? extends T

We obtain a representation of the method as before and this time retrieve the type of its method parameter Collection<? extends T> via
Method.getGenericParameterTypes(). The result is the representation of the parameterized type Collection<? extends T> as an object of
type java.lang.reflect.ParameterizedType. We retrieve its type argument ? extends T via
ParameterizedType.getActualTypeArguments() and check whether the type argument is a wildcard expression by checking whether it is
represented by an object of type java.lang.reflect.WildcardType.

LINK TO THIS #FAQ714

REFERENCES Which information is available about a wildcard?

Which information is available about a wildcard?

The upper and the lower bound.

Wildcards can have an upper or a lower bound. Consequently, a wildcard represented reflectively by an object of type
java.lang.reflect.Wildcard supports retrieval of the bound.

For illustration, let us revisit the wildcards from the previous FAQ entry Practicalities.FAQ714, namely the wildcards that appear in the method signature

<T extends Object & Comparable<? super T>> T Collections.max(Collection<? extends T>).

Say, we retrieved a presentation of the wild "? super T" as described in the previous FAQ entry Practicalities.FAQ714. Then we can obtain it upper
bound by calling the methods Wildcard.getLowerBounds() and Wildcard.getUpperBounds().

Example (of retrieving a wildcard's bound):

Method method = Collections.class.getMethod("max",Collection.class);
TypeVariable<Method> typeParameter = method.getTypeParameters()[0];
ParameterizedType bound = (ParameterizedType)typeParameter.getBounds()[1];
WildcardType wildcard = (WildcardType)bound.getActualTypeArguments()[0];
System.out.println("WILDCARD: "+wildcard);

Type[] lowerBounds = wildcard.getLowerBounds();
System.out.print("lower bound: ");
if (lowerBounds != null && lowerBounds.length > 0) {
 for (Type t : lowerBounds)
 System.out.println("\t" + t);
}
else {
 System.out.println("\t" + "<none>");
}
Type[] upperBounds = wildcard.getUpperBounds();
System.out.print("upper bound: ");
if (upperBounds != null && upperBounds.length > 0) {
 for (Type t : upperBounds)
 System.out.println("\t" + t);
}
else {
 System.out.println("\t" + "<none>");
}

WILDCARD: ? super T
lower bound: T
upper bound: class java.lang.Object

Interestingly, we can retrieve upper and lower bounds although a wildcard can have at most one bound - either an upper bound or a lower bound,
but never both.

The wildcard "? super T" has a lower bound, but no upper bound. Yet the getUpperBounds() method returns an upper bound, namely Object,
which makes sense because Object can be seen as the default upper bound of every wildcard.

Conversely, the wildcard "? extends T" has an upper bound, but no lower bound. The getLowerBounds() method returns a zero-length array in
that case.

This is illustrated by the wildcard in the method's parameter type Collection<? extends T>. Say, we retrieved a presentation of the wild "?
extends T" as described in the previous FAQ entry Practicalities.FAQ714. Then we can try out which bounds the methods Wildcard.getLowerBounds()
and Wildcard.getUpperBounds() return.

Example (of retrieving a wildcard's bound):

Method method = Collections.class.getMethod("max",Collection.class);
ParameterizedType methodParameterType = (ParameterizedType)method.getGenericParameterTypes()[0];
WildcardType wildcard = (WildcardType)methodParameterType.getActualTypeArguments()[0];
System.out.println("WILDCARD: "+wildcard);

Type[] lowerBounds = wildcard.getLowerBounds();
System.out.print("lower bound: ");
if (lowerBounds != null && lowerBounds.length > 0) {
 for (Type t : lowerBounds)
 System.out.println("\t" + t);
}
else {
 System.out.println("\t" + "<none>");
}
Type[] upperBounds = wildcard.getUpperBounds();
System.out.print("upper bound: ");
if (upperBounds != null && upperBounds.length > 0) {
 for (Type t : upperBounds)
 System.out.println("\t" + t);
}
else {
 System.out.println("\t" + "<none>");
}

WILDCARD: ? extends T
lower bound: <none>
upper bound: T

LINK TO THIS Practicalities.FAQ715

REFERENCES What is a wildcard type?
java.lang.reflect.Wildcard

CONTENT PREVIOUS NEXT INDEX

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Wildcard.html

Technicalities - Under The Hood Of The Compiler
© Copyright 2003-2022 by Angelika Langer. All Rights Reserved.

Compiler Messages

What is an "unchecked" warning?
How can I disable or enable unchecked warnings?
What is the -Xlint:unchecked compiler option?
What is the SuppressWarnings annotation?
How can I avoid "unchecked cast" warnings?
Is it possible to eliminate all "unchecked" warnings?
Why do I get an "unchecked" warning although there is no type information missing?

Heap Pollution

What is heap pollution?
When does heap pollution occur?

Type Erasure

How does the compiler translate Java generics?
What is type erasure?
What is reification?
What is a bridge method?
Under which circumstances is a bridge method generated?
Why does the compiler add casts when it translates generics?
How does type erasure work when a type parameter has several bounds?
What is a reifiable type?
What is the type erasure of a parameterized type?
What is the type erasure of a type parameter?
What is the type erasure of a generic method?
Is generic code faster or slower than non-generic code?
How do I compile generics for use with JDK <= 1.4?

Type System

How do parameterized types fit into the Java type system?
How does the raw type relate to instantiations of the corresponding generic type?
How do instantiations of a generic type relate to instantiations of other generic types that have the same type argument?
How do unbounded wildcard instantiations of a generic type relate to other instantiations of the same generic type?
How do wildcard instantiations with an upper bound relate to other instantiations of the same generic type?
How do wildcard instantiations with a lower bound relate to other instantiations of the same generic type?
Which super-subtype relationships exist among instantiations of generic types?
Which super-subset relationships exist among wildcards?

Does "extends" always mean "inheritance"?

Exception Handling

Can I use parameterized types in exception handling?
Why are generic exception and error types illegal?
Can I use a type parameter in exception handling?
Can I use a type parameter in a catch clause?
Can I use a type parameter in in a throws clause?
Can I throw an object whose type is a type parameter?

Static Context

How do I refer to static members of a parameterized type?
How do I refer to a (non-static) inner class of a parameterized type?
How do I refer to an interface type nested into a parameterized type?
How do I refer to an enum type nested into a parameterized type?
Can I import a particular instantiations of a generic type?
Why are generic enum types illegal?

Type Argument Inference

What is type argument inference?
Is there a correspondence between type inference for method invocation and type inference for instance creation?
What is the "diamond" operator?
What is type argument inference for instance creation expressions?
Why does the type inference for an instance creation expression fail?
What is type argument inference for generic methods?
What is explicit type argument specification?
Can I use a wildcard as the explicit type argument of a generic method?
What happens if a type parameter does not appear in the method parameter list?
Why doesn't type argument inference fail when I provide inconsistent method arguments?
Why do temporary variables matter in case of invocation of generic methods?

Wilcard Capture

What is the capture of a wildcard?
What is the capture of an unbounded wildcard compatible to?
Is the capture of a bounded wildcard compatible to the bound?

Wildcard Instantiations

Which methods and fields are accessible/inaccessible through a reference variable of a wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parmeterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parmeterized type?

Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized
type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized
type?
In a wildcard parameterized type, can I read and write fields whose type is the type parameter?
Is it really impossible to create an object whose type is a wildcard parameterized type?

Cast and instanceof

Which types can or must not appear as target type in an instanceof expression?

Overloading and Overriding

What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is a subsignature?
What are override-equivalent signatures?
When does a method override its supertype's method?
What are covariant-return types?
What are substitutable return types?
Can a method of a non-generic subtype override a method of a generic supertype?
Can a method of a generic subtype override a method of a generic supertype?
Can a generic method override a generic one?
Can a non-generic method override a generic one?
Can a generic method override a non-generic one?
What is overload resolution?

Under The Hood Of The Compiler

Compiler Messages

What is an "unchecked" warning?

A warning by which the compiler indicates that it cannot ensure type safety.

The term "unchecked" warning is misleading. It does not mean that the warning is unchecked in any way. The term "unchecked" refers to the fact that the compiler
and the runtime system do not have enough type information to perform all type checks that would be necessary to ensure type safety. In this sense, certain
operations are "unchecked".

The most common source of "unchecked" warnings is the use of raw types. "unchecked" warnings are issued when an object is accessed through a raw type
variable, because the raw type does not provide enough type information to perform all necessary type checks.

Example (of unchecked warning in conjunction with raw types):

TreeSet set = new TreeSet();
set.add("abc"); // unchecked warning
set.remove("abc");

warning: [unchecked] unchecked call to add(E) as a member of the raw type java.util.TreeSet
 set.add("abc");
 ^

When the add method is invoked the compiler does not know whether it is safe to add a String object to the collection. If the TreeSet is a collection that contains
Strings (or a supertype thereof), then it would be safe. But from the type information provided by the raw type TreeSet the compiler cannot tell. Hence the call is
potentially unsafe and an "unchecked" warning is issued.

"unchecked" warnings are also reported when the compiler finds a cast whose target type is either a parameterized type or a type parameter.

Example (of an unchecked warning in conjunction with a cast to a parameterized type or type variable):

class Wrapper<T> {
 private T wrapped;
 public Wrapper(T arg) {wrapped = arg;}
 ...
 public Wrapper<T> clone() {
 Wrapper<T> clon = null;
 try {
 clon = (Wrapper<T>)super.clone(); // unchecked warning
 } catch (CloneNotSupportedException e) {
 throw new InternalError();
 }
 try {
 Class<?> clzz = this.wrapped.getClass();
 Method meth = clzz.getMethod("clone", new Class[0]);
 Object dupl = meth.invoke(this.wrapped, new Object[0]);

 clon.wrapped = (T)dupl; // unchecked warning
 } catch (Exception e) {}
 return clon;
 }
}

warning: [unchecked] unchecked cast
found : java.lang.Object
required: Wrapper<T>
 clon = (Wrapper<T>)super.clone();
 ^
warning: [unchecked] unchecked cast
found : java.lang.Object
required: T
 clon.wrapped = (T)dupl;
 ^

A cast whose target type is either a (concrete or bounded wildcard) parameterized type or a type parameter is unsafe, if a dynamic type check at runtime is
involved. At runtime, only the type erasure is available, not the exact static type that is visible in the source code. As a result, the runtime part of the cast is
performed based on the type erasure, not on the exact static type.

In the example, the cast to Wrapper<T> would check whether the object returned from super.clone is a Wrapper, not whether it is a wrapper with a particular type
of members. Similarly, the casts to the type parameter T are cast to type Object at runtime, and probably optimized away altogether. Due to type erasure, the
runtime system is unable to perform more useful type checks at runtime.

In a way, the source code is misleading, because it suggests that a cast to the respective target type is performed, while in fact the dynamic part of the cast only
checks against the type erasure of the target type. The "unchecked" warning is issued to draw the programmer's attention to this mismatch between the static and
dynamic aspect of the cast.

LINK TO THIS Technicalities.FAQ001

REFERENCES
What does type-safety mean?
How can I disable or enable unchecked warnings?
What is the raw type?
Can I use a raw type like any other type?
Can I cast to a parameterized type?
Can I cast to the type that the type parameter stands for?

How can I disable or enable "unchecked" warnings?

Via the compiler options -Xlint:unchecked and -Xlint:-unchecked and via the standard annotation @SuppressWarnings("unchecked").

The compiler option -Xlint:-unchecked disables all unchecked warnings that would occur in a compilation.

The annotation @SuppressWarnings("unchecked") suppresses all warnings for the annotated part of the program.

Note, in the first release of Java 5.0 the SuppressWarnings annotation is not yet supported.

LINK TO THIS Technicalities.FAQ002

REFERENCES What is the -Xlint:unchecked compiler option?
What is the SuppressWarnings annotation?

What is the -Xlint:unchecked compiler option?

The compiler option -Xlint:unchecked enables "unchecked" warnings, the option -Xlint:-unchecked disables all unchecked warnings.

"unchecked" warnings are by default disabled. If you compile a program with no particular compiler options then the compiler will not report any "unchecked"
warnings. If the compiler finds source code for which it would want to report an "unchecked" warning it only gives a general hint. You will find the following note
at the end of the list of all other errors and warnings:

Note: util/Wrapper.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

If you want to see the "unchecked" warnings you must start the compiler with the -Xlint:unchecked option.

Example (of globally enabling unchecked warnings):

javac -Xlint:unchecked util/Wrapper.java

The option -Xlint:unchecked enables the "unchecked" warnings. The "unchecked" warnings are also enabled when you use the -Xlint:all option.

The option -Xlint:-unchecked disables the "unchecked" warnings. This is useful to suppress all "unchecked" warnings, while other types of warnings remain
enabled.

Example (of globally disabling unchecked warnings):

javac -g -source 1.5 -Xlint:all -Xlint:-unchecked util/Wrapper.java

In this example, using -Xlint:all all warnings (such as "unchecked", "deprecated", "fallthrough", etc.) are enabled and subsequently the "unchecked" warnings are
disabled using -Xlint:-unchecked. As a result all warnings except "unchecked" warnings will be reported.

LINK TO THIS Technicalities.FAQ003

REFERENCES What is an "unchecked" warning?
What is the SuppressWarnings annotation?

What is the SuppressWarnings annotation?

A standard annotation that suppresses warnings for the annotated part of the program.

The compiler supports a number of standard annotations (see package java.lang.annotation). Among them is the SuppressWarnings annotation. It contains a list
of warning labels. If a definition in the source code is annotated with the SuppressWarnings annotation, then all warnings, whose labels appear in the annotation's
list of warning labels, are suppressed for the annotated definition or any of its parts.

The SuppressWarnings annotation can be used to suppress any type of labelled warning. In particular we can use the annotation to suppress "unchecked"
warnings.

Example (of suppressing unchecked warnings):

@SuppressWarnings("unchecked")
class Wrapper<T> {
 private T wrapped;
 public Wrapper(T arg) {wrapped = arg;}
 ...
 public Wrapper<T> clone() {
 Wrapper<T> clon = null;
 try {
 clon = (Wrapper<T>)super.clone(); // unchecked warning supressed
 } catch (CloneNotSupportedException e) {
 throw new InternalError();
 }
 try {
 Class<?> clzz = this.wrapped.getClass();
 Method meth = clzz.getMethod("clone", new Class[0]);
 Object dupl = meth.invoke(this.wrapped, new Object[0]);
 clon.wrapped = (T)dupl; // unchecked warning supressed
 } catch (Exception e) {}
 return clon;
 }
}

This example would usually raise 2 "unchecked" warnings. Since we annotated the entire class, all unchecked warnings raised anywhere in the class
implementation are suppressed.

We can suppress several types of annotations at a time. In this case we must specify a list of warning labels.

Example (of suppressing several types of warnings):

@SuppressWarnings(value={"unchecked","deprecation"})
public static void someMethod() {
 ...
 TreeSet set = new TreeSet();
 set.add(new Date(104,8,11)); // unchecked and deprecation warning suppressed

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/annotation/package-summary.html

 ...
}

This example would usually raise 2 warnings when the call to method add is compiled:

warning: [deprecation] Date(int,int,int) in java.util.Date has been deprecated
 set.add(new Date(104,8,11));
 ^
warning: [unchecked] unchecked call to add(E) as a member of the raw type java.util.TreeSet
 set.add(new Date(104,8,11));

 The annotation preceding the enclosing method suppresses all unchecked and deprecation warnings anywhere in the method implementation.

Annotations can not be attached to statements, expressions, or blocks, only to program entities with a definition like types, variables, etc.

Example (of illegal placement of annotation):

public static void someMethod() {
 ...
 TreeSet set = new TreeSet();
 @SuppressWarnings(value={"unchecked"}) // error
 set.add(new Date(104,8,11));
 ...
}

Annotations can be attached to the definition of packages, classes, interfaces, fields, methods, parameters, constructors, local variables, enum types, enum constants,
and annotation types. An annotated package declaration must go into a file named package-info.java in the directory that represents the package.

Note, in release of Java 5.0 the SuppressWarnings annotation is not yet supported by all compilers. Sun's compiler will support in in release 6.0.

LINK TO THIS Technicalities.FAQ004

REFERENCES What is an "unchecked" warning?
How can I disable or enable unchecked warnings?

How can I avoid "unchecked cast" warnings?

By using an unbounded wildcard parmeterized type as target type of a cast expression.

Occasionally, we would like to cast to a parameterized type, just to discover that the compiler flags it with an "unchecked" warning. As we are interested in
warning-free compilation of our source code, we would like to avoid this warning. Use of an unbounded wildcard parameterized type instead of a concrete or a
bounded wildcard parameterized type would help avoid the warning.

A typical example is the implementation of methods such as the equals method, that take Object reference and where a cast down to the actual type must be
performed.

Example (not recommended):

class Wrapper<T> {
 private T wrapped;
 ...
 public boolean equals(Object other) {
 ...
 Wrapper<T> otherWrapper = (Wrapper<T>)other; // warning; unchecked cast
 return (this.wrapped.equals(otherWrapper.wrapped));
 }
}

When we replace the cast to Wrapper<T> by a cast to Wrapper<?> the warning disappears, because unbounded wildcard parameterized types are permitted as target
type of a cast without any warnings.

Example (implementation of equals):

class Wrapper<T> {
 private T wrapped;
 ...
 public boolean equals(Object other) {
 ...
 Wrapper<?> otherWrapper = (Wrapper<?>)other;
 return (this.wrapped.equals(otherWrapper.wrapped));
 }
}

Note, this technique works in this example only because we need no write access to the fields of the object refered to through the wildcard parameterized type and
we need not invoke any methods. Remember, use of the object that a wildcard reference variable refers to is restricted. In other situations use of a wildcard
parameterized type might not be a viable solution, because full access to the referenced object is needed.

LINK TO THIS Technicalities.FAQ005

REFERENCES Can I cast to a parameterized type?
What is an "unchecked" warning?
How can I disable or enable unchecked warnings?
How do I best implement the equals method of a generic type?

Is it possible to eliminate all "unchecked" warnings?

Almost.

"Unchecked" warnings stem either from using generic types in their raw form or from casts whose target type is a type parameter or a concrete or bounded wildcard
parameterized type. If you refrain from both using raw types and the critical casts you can theoretically eliminate all "unchecked" warnings. Whether this is doable

in practice depends on the circumstances.

Raw types.

When source code is compiled for use in Java 5.0 that was developed before Java 5.0 and uses classes that are generic in Java 5.0, then "unchecked" warnings are
inevitable. For instance, if "legacy" code uses types such as List, which used to be a regular (non-generic) types before Java 5.0, but are generic in Java 5.0, all
these uses of List are considered uses of a raw type in Java 5.0. Use of the raw types will lead to "unchecked" warnings. If you want to eliminate the "unchecked"
warnings you must re-engineer the "legacy" code and replace all raw uses of List with appropriate instantiations of List such as List<String>, List<Object>,
List<?>, etc. All "unchecked" warnings can be eliminated this way.

In source code developed for Java 5.0 you can prevent "unchecked" warnings in the first place by never using raw types. Always provide type arguments when you
use a generic type. There are no situations in which you are forced to use a raw type. In case of doubt, when you feel you have no idea which type argument would
be appropriate, try the unbounded wildcard "?".

In essence, "unchecked" warnings due to use of raw types can be eliminated if you have access to legacy code and are willing to re-engineer it.

Casts.

"Unchecked" warnings as a result of cast expressions can be eliminated by eliminating the offensive casts. Eliminating such casts is almost always possible. There
are, however, a few situations where a cast to a type parameter or a concrete or bounded wildcard parameterized type cannot be avoided.

These are typically situations where a method returns a supertype reference to an object of a more specific type. The classic example is the clone method; it returns
an Object reference to an object of the type on which it was invoked. In order to recover the returned object's actual type a cast in necessary. If the cloned object is
of a parameterized type, then the target type of the cast is an instantiation of that parameterized type, and an "unchecked" warning is inevitable. The clone method
is just one example that leads to unavoidable "unchecked" warnings. Invocation of methods via reflection has similar effects because the return value of a
reflectively invoked method is returned via an Object reference. It is likely that you will find further examples of unavoidable "unchecked" casts in practice. For a
detailed discussion of an example see Technicalities.FAQ502, which explains the implementation of a clone method for a generic class.

In sum, there are situations in which you cannot eliminate "unchecked" warnings due to a cast expression.

LINK TO THIS Technicalities.FAQ006

REFERENCES What is an "unchecked" warning?
How do I best implement the clone method of a generic type?

Why do I get an "unchecked" warning although there is no type information missing?

Because the compiler performs all type checks based on the type erasure when you use a raw type.

Usually the compiler issues an "unchecked" warning in order to alert you to some type-safety hazard that the compiler cannot prevent because there is not enough
type information available. One of these situations is the invocation of methods of a raw type.

Example (of unchecked warning in conjunction with raw types):

class TreeSet<E> {
 booleanadd(E o){ ... }
}
TreeSet set = new TreeSet();
set.add("abc"); // unchecked warning

warning: [unchecked] unchecked call to add(E) as a member of the raw type TreeSet
 set.add("abc");
 ^

When the add method is invoked the compiler does not know whether it is safe to add a String object to the collection because the raw type TreeSet does not
provide any information regarding the type of the contained elements.

Curiously, an unchecked warning is also issued in situations where there is enough type information available.

Example (of a spurious unchecked warning in conjunction with raw types):

class SomeType<T> {
 public List<String> getList() { ... }
}
SomeTyperaw = new SomeType();
List<String> listString = raw.getList(); // unchecked warning

warning: [unchecked] unchecked conversion
found : List
required: List<String>
 List<String> listString = raw.getList();
 ^

In this example, there is no type information missing. The getList method is declared to return a List<String> and this is so even in the raw type because the
method does not depend on the enclosing class's type parameter. Yet the compiler complains.

The reason is that the compiler computes the type erasure of a generic type when it finds an occurrence of the raw type in the source code. Type erasure does not
only elide all occurances of the type parameter T, but also elides the type argument of the getList method's return type. After type erasure, the getList method
returns just a List and no longer a List<String>. All subsequent type checks are performed based on the type erasure; hence the "unchecked" warning.

The "unchecked" warning can easily be avoided by refraining from use of the raw type. SomeType is a generic type and should always be used with a type
argument. In general, the use of raw types will inevitably result in "unchecked" warnings; some of the warnings may be spurious, but most of them are justified.

Note, that no spurious warning is issued when the method in question is a static method.

Example (of invoking a static method of a raw type):

class SomeType<T> {
 public static List<String> getList() { ... }

}
SomeType raw = new SomeType();
List<String> listString = raw.getList(); // fine

LINK TO THIS Technicalities.FAQ007

REFERENCES What is an "unchecked" warning?
Should I prefer parameterized types over raw types?
Why shouldn't I mix parameterized and raw types, if I feel like it?

Heap Pollution

What is heap pollution?

A situation where a variable of a parameterized type refers to an object that is not of that parameterized type.

It can happen that a variable of a parameterized type such as List<String> refers to an object that is not of that parameterized type.

Example (of heap pollution):

List ln = new ArrayList<Number>();
List<String> ls =ln; // unchecked warning
String s = ls.get(0);// ClassCastException

After the assignment of the reference variable ln to the reference variable ls, the List<String> variable will point to a List<Number> object. Such a situation is
called heap pollution and is usually indicated by an unchecked warning. A polluted heap is likely to lead to an unexpected ClassCastException at runtime. In the
example above, it will lead to a ClassCastException, when a object is retrieved from the List<String> and assigned to a String variable, because the object is
a Number, not a String.

LINK TO THIS Technicalities.FAQ050

REFERENCES
What is an "unchecked" warning?
When does heap pollution occur?

When does heap pollution occur?

As a result of mixing raw and parameterized type, unwise casting, and separate compilation.

Heap pollution occurs in three situations:

mixing raw types and parameterized types
performing unchecked casts
separate compilation of translation units

With the exception of separate compilation, the compiler will always issue an unchecked warning to draw your attention to the potential heap pollution. If you co-
compile your code without warnings then no heap pollution can ever occur.

Raw Types

Heap pollution can occur when raw types and parameterized types are mixed and a raw type variable is assigned to a parameterized type variable. Note, that heap
pollution does not necessarily occur, even if the compiler issues an unchecked warning.

Example (of mixing raw and parameterized types):

List ln = new ArrayList<Number>();
List ls = new LinkedList<String>();

List<String> list;
list = ln; // unchecked warning + heap pollution
list = ls;// unchecked warning + NO heap pollution

The first assignment leads to heap pollution, because the List<String> variable would then point to a List<Number>. The second assignment does not result in
heap pollution, because the raw type variable on the right-hand side of the assignment refers to a List<String>, which matches the parameterized type on the left-
hand side of the assignment.

Mixing raw and parameterized types should be avoided, if possible. It cannot be avoided when non-generic legacy code is combined with modern generic code. But
otherwise, the mix is bad programming style.

Unchecked Casts

Unwise casting can lead to all kinds of unhealthy situations. In particular, in can lead to heap pollution.

Example (of cast to parameterized type polluting the heap):

List<? extends Number> ln = new ArrayList<Long>();
List<Short> ls = (List<Short>) ln; // unchecked warning + heap pollution
List<Long> ll = (List<Long>) ln; // unchecked warning + NO heap pollution

The compiler permits the two casts in the example above, because List<? extends Number> is a supertype of the types List<Short> and List<Long>. The casts

are similar to casts from supertype Object to subtype Short or Long. The key difference is that the correctness of a cast to a non-parameterized type can be
ensured at runtime and will promptly lead to ClassCastException, while a cast to a parameterized type cannot be ensured at runtime because of type erasure and
might results in heap pollution.

Casts with a parameterized target type can lead to heap pollution, and so do casts to type variables.

Example (of cast to type variable polluting the heap):

<S,T> S convert(T arg) {
 return (S)arg; // unchecked warning
}
Number n = convert(new Long(5L)); // fine
String s = convert(new Long(5L)); // ClassCastException

In this example we do not cast to a parameterized type, but a type variable S. The compiler permits the cast because the cast could
succeed, but there is no way to ensure success of the cast at runtime.

Casts, whose target type is a parameterized type or a type variable, should be avoided, if possible.

Separate Compilation

Another situation, in which heap pollution can occur is separate compilation of translation units.

Example (initial implementation):

file FileCrawler.java:
final class FileCrawler {
 ...
 public List<String> getFileNames() {
List<String> list = new LinkedList<String>();
 ...
 return list;
 }
}

file Test.java:
final class Test {
 public static void main(String[] args) {
 FileCrawler crawler = new FileCrawler("http:\\www.goofy.com");
List<String> files = crawler.getFileNames();
 System.out.println(files.get(0));
 }
}

The program compiles and runs fine. Now, let's assume that we modify the FileCrawler implementation. Instead of returning
a List<String> we return a List<StringBuilder>. Note, the other class is not changed at all.

Example (after modification and co-compilation):

file FileCrawler.java:
final class FileCrawler {
 ...
 public List<StringBuilder> getFileNames() {

List<StringBuilder> list = new LinkedList<StringBuilder>();
 ...
 return list;
 }
}

file Test.java:
final class Test {
 public static void main(String[] args) {
 FileCrawler crawler = new FileCrawler("http:\\www.goofy.com");
List<String> files = crawler.getFileNames(); // error
 System.out.println(files.get(0));
 }
}

When we co-compile both translation units, the compiler would report an error in the unmodified file Test.java, because the return type
of the getNames() method does no longer match the expected type List<String>.

If we compiler separately, that is, only compile the modified fileTest.java, then no error would be reported. This is because the
class, in which the error occurs, has not been re-compiled. When the program is executed, a ClassCastException will occur.

Example (after modification and separate compilation):

file FileCrawler.java:
final class FileCrawler {
 ...
 public List<StringBuilder> getFileNames() {
List<StringBuilder> list = new LinkedList<StringBuilder>();
 ...
 return list;
 }
}

file Test.java:
final class Test {
 public static void main(String[] args) {
 FileCrawler crawler = new FileCrawler("http:\\www.goofy.com");
List<String> files = crawler.getFileNames(); // fine
 System.out.println(files.get(0)); // ClassCastException
 }
}

This is another example of heap pollution. The compiler, since it does not see the entire program, but only a part of it, cannot
detect the error. Co-compilation avoids this problem and enables the compiler to detect and report the error.

Separate compilation in general is hazardous, independently of generics. If you provide a method that first returns a String and
later you change it to return a StringBuilder, without re-compiling all parts of the program that use the method, you end up in a
similarly disastrous situation. The crux is the incompatible change of the modified method. Either you can make sure that the
modified part is co-compiled with all parts that use it or you must not introduce any incompatible changes such as changes in
semantics of types or signatures of methods.

LINK TO THIS Technicalities.FAQ051

REFERENCES
What is heap pollution?
What is an "unchecked" warning?
How can I avoid "unchecked cast" warnings?
Is it possible to eliminate all "unchecked" warnings?

Type Erasure

How does the compiler translate Java generics?

By creating one unique byte code representation of each generic type (or method) and mapping all instantiations of the generic type (or method) to this unique
representation.

The Java compiler is responsible for translating Java source code that contains definitions and usages of generic types and methods into Java byte code that the
virtual machine can interpret. How does that translation work?

A compiler that must translate a generic type or method (in any language, not just Java) has in principle two choices:

Code specialization. The compiler generates a new representation for every instantiation of a generic type or method. For instance, the compiler would generate
code for a list of integers and additional, different code for a list of strings, a list of dates, a list of buffers, and so on.

Code sharing. The compiler generates code for only one representation of a generic type or method and maps all the instantiations of the generic type or method to
the unique representation, performing type checks and type conversions where needed.

Code specialization is the approach that C++ takes for its templates:
The C++ compiler generates executable code for every instantiation of a template. The downside of code specialization of generic types is its potential for code
bloat. A list of integers and a list of strings would be represented in the executable code as two different types. Note that code bloat is not inevitable in C++ and
can generally be avoided by an experienced programmer.

Code specialization is particularly wasteful in cases where the elements in a collection are references (or pointers), because all references (or pointers) are of the
same size and internally have the same representation. There is no need for generation of mostly identical code for a list of references to integers and a list of
references to strings. Both lists could internally be represented by a list of references to any type of object. The compiler just has to add a couple of casts whenever
these references are passed in and out of the generic type or method. Since in Java most types are reference types, it deems natural that Java chooses code sharing as
its technique for translation of generic types and methods.

The Java compiler applies the code sharing technique and creates one unique byte code representation of each generic type (or method). The various instantiations
of the generic type (or method) are mapped onto this unique representation by a technique that is called type erasure.

LINK TO THIS Technicalities.FAQ100

REFERENCES What is type erasure?

What is type erasure?

A process that maps a parameterized type (or method) to its unique byte code representation by eliding type parameters and arguments.

The compiler generates only one byte code representation of a generic type or method and maps all the instantiations of the generic type or method to the unique

representation. This mapping is performed by type erasure. The essence of type erasure is the removal of all information that is related to type parameters and type
arguments. In addition, the compiler adds type checks and type conversions where needed and inserts synthetic bridge methods if necessary. It is important to
understand type erasure because certain effects related to Java generics are difficult to understand without a proper understanding of the translation process.

The type erasure process can be imagined as a translation from generic Java source code back into regular Java code. In reality the compiler is more efficient and
translates directly to Java byte code. But the byte code created is equivalent to the non-generic Java code you will be seeing in the subsequent examples.

The steps performed during type erasure include:

Eliding type parameters.
When the compiler finds the definition of a generic type or method, it removes all occurrences of the type parameters and replaces them by their leftmost bound, or
type Object if no bound had been specified.

Eliding type arguments.
When the compiler finds a paramterized type, i.e. an instantiation of a generic type, then it removes the type arguments. For instance, the types List<String>,
Set<Long>, and Map<String,?> are translated to List, Set and Map respectively.

Example (before type erasure):

interface Comparable<A> {
 public int compareTo(A that);
}
final class NumericValue implements Comparable<NumericValue> {
 private byte value;
 public NumericValue(byte value) { this.value = value; }
 public byte getValue() { return value; }
 public int compareTo(NumericValue that) { return this.value - that.value; }
}
class Collections {
 public static <A extends Comparable<A>>A max(Collection<A> xs) {
 Iterator<A> xi = xs.iterator();
 A w = xi.next();
 while (xi.hasNext()) {
 A x = xi.next();
 if (w.compareTo(x) < 0) w = x;
 }
 return w;
 }
}
final class Test {
 public static void main (String[] args) {
 LinkedList<NumericValue> numberList = new LinkedList<NumericValue>();
 numberList.add(new NumericValue((byte)0));
 numberList.add(new NumericValue((byte)1));
 NumericValue y = Collections.max(numberList);
 }

}

Type parameters are green and type arguments are blue. During type erasure the type arguments are discarded and the type paramters are replaced by their leftmost
bound.

Example (after type erasure):

interface Comparable {
 public int compareTo(Object that);
}
final class NumericValue implements Comparable {
 private byte value;
 public NumericValue(byte value) { this.value = value; }
 public byte getValue() { return value; }
 public int compareTo(NumericValue that) { return this.value - that.value; }
 public int compareTo(Object that) { return this.compareTo((NumericValue)that); }
}
class Collections {
 public static Comparable max(Collection xs) {
 Iterator xi = xs.iterator();
 Comparable w = (Comparable) xi.next();
 while (xi.hasNext()) {
 Comparable x = (Comparable) xi.next();
 if (w.compareTo(x) < 0) w = x;
 }
 return w;
 }
}
final class Test {
 public static void main (String[] args) {
 LinkedList numberList = new LinkedList();
 numberList.add(new NumericValue((byte)0));
 numberList.add(new NumericValue((byte)1));
 NumericValue y = (NumericValue) Collections.max(numberList);
 }
}

The generic Comparable interface is translated to a non-generic interface and the unbounded type parameter A is replaced by type Object.

The NumericValue class implements the non-generic Comparable interface after type erasure, and the compiler adds a so-called bridge method. The bridge method
is needed so that class NumericValue remains a class that implements the Comparable interface after type erasure.

The generic method max is translated to a non-generic method and the bounded type parameter A is replaced by its leftmost bound, namely Comparable. The
parameterized interface Iterator<A> is translated to the raw type Iterator and the compiler adds a cast whenever an element is retrieved from the raw type
Iterator.

The uses of the parameterized type LinkedList<NumericValue> and the generic max method in the main method are translated to uses of the non-generic type and
method and, again, the compiler must add a cast.

LINK TO THIS Technicalities.FAQ101

REFERENCES What is a bridge method?
Why does the compiler add casts when it translates generics?
How does type erasure work when a type parameter has several bounds?

What is reification?

Representing type parameters and arguments of generic types and methods at runtime. Reification is the opposite of type erasure.

In Java, type parameters and type arguments are elided when the compiler performs type erasure. A side effect of type erasure is that the virtual
machine has no information regarding type parameters and type arguments. The JVM cannot tell the difference between a List<String> and
a List<Date>.

In other languages, like for instance C#, type parameters and type arguments of generics types and methods do have a runtime representation. This
representation allows the runtime system to perform certain checks and operations based on type arguments. In such a language the runtime system
can tell the difference between a List<String> and a List<Date>.

LINK TO THIS Technicalities.FAQ101A

REFERENCES What is type erasure?
What is a reifiable type?

What is a bridge method?

A synthetic method that the compiler generates in the course of type erasure. It is sometimes needed when a type extends or implements a parameterized class
or interface.

The compiler insert bridge methods in subtypes of parameterized supertypes to ensure that subtyping works as expected.

Example (before type erasure):

interface Comparable<A> {
 public int compareTo(A that);
}
final class NumericValue implements Comparable<NumericValue> {
 private byte value;

 public NumericValue(byte value) { this.value = value; }
 public byte getValue() { return value; }
 public int compareTo(NumericValue that) { return this.value - that.value; }
}

In the example, class NumericValue implements interface Comparable<NumericValue> and must therefore override the superinterface's compareTo method. The
method takes a NumericValue as an argument. In the process of type erasure, the compiler translates the parameterized Comparable<A> interface to its type erased
counterpart Comparable. The type erasure changes the signature of the interface's compareTo method. After type erasure the method takes an Object as an
argument.

Example (after type erasure):

interface Comparable {
 public int compareTo(Object that);
}
final class NumericValue implements Comparable {
 private byte value;
 public NumericValue(byte value) { this.value = value; }
 public byte getValue() { return value; }
 public int compareTo(NumericValue that) { return this.value - that.value; }
 public int compareTo(Object that) { return this.compareTo((NumericValue)that); }
}

After this translation, method NumericValue.compareTo(NumericValue) is no longer an implementation of the interface's compareTo method. The type erased
Comparable interface requires a compareTo method with argument type Object, not NumericValue. This is a side effect of type erasure: the two methods (in the
interface and the implementing class) have identical signatures before type erasure and different signatures after type erasure.

In order to achieve that class NumericValue remains a class that correctly implements the Comparable interface, the compiler adds a bridge method to the class.
The bridge method has the same signature as the interface's method after type erasure, because that's the method that must be implemented. The bridge method
delegates to the orignal methods in the implementing class.

The existence of the bridge method does not mean that objects of arbitrary types can be passed as arguments to the compareTo method in NumericValue. The
bridge method is an implementation detail and the compiler makes sure that it normally cannot be invoked.

Example (illegal attempt to invoke bridge method):

NumericValue value = new NumericValue((byte)0);
value.compareTo(value); // fine
value.compareTo("abc"); // error

The compiler does not invoke the bridge method when an object of a type other than NumericValue is passed to the compareTo method. Instead it rejects the call
with an error message, saying that the compareTo method expects a NumericValue as an argument and other types of arguments are not permitted.

You can, however, invoke the synthetic bridge message using reflection. But, if you provide an argument of a type other than NumericValue, the method will fail
with a ClassCastException thanks of the cast in the implementation of the bridge method.

Example (failed attempt to invoke bridge method via reflection):

int reflectiveCompareTo(NumericValue value, Object other)
 throws NoSuchMethodException, IllegalAccessException, InvocationTargetException
{
 Method meth = NumericValue.class.getMethod("compareTo", new Class[]{Object.class});
 return (Integer)meth.invoke(value, new Object[]{other});
}
NumericValue value = new NumericValue((byte)0);
reflectiveCompareTo(value, value); // fine
reflectiveCompareTo(value,"abc"); // ClassCastException

The cast to type NumericValue in the bridge method fails with a ClassCastException when an argument of a type other than NumericValue is passed to the bridge
method. This was it is guaranteed that a bridge method, even when it is called, will fail for unexpected argument types.

LINK TO THIS Technicalities.FAQ102

REFERENCES What is type erasure?
Under which circumstances is a bridge method generated?

Under which circumstances is a bridge method generated?

When a type extends or implements a parameterized class or interface and type erasure changes the signature of any inherited method.

Bridge methods are necessary when a class implements a parameterized interface or extends a parameterized superclass and type ersure changes the argument type
of any of the inherited non-static methods.

Below is an example of a class that extends a parameterized superclass.

Example (before type erasure):

class Superclass<T extends Bound> {
 public void m1(T arg) { ... }
 public T m2() { ... }
}
class Subclass extends Superclass<SubTypeOfBound> {
 public void m1(SubTypeOfBound arg) { ... }
 public SubTypeOfBound m2() { ... }
}

Example (after type erasure):

class Superclass {
 void m1(Bound arg) { ... }
 Bound m2() { ... }

}
class Subclass extends Superclass {
 public void m1(SubTypeOfBound arg) { ... }
 public void m1(Bound arg) { m1((SubTypeOfBound)arg); }
 public SubTypeOfBound m2() { ... }
 public Bound m2() { return m2(); }
}

Type erasure changes the signature of the superclass's methods. The subclass's methods are no longer overriding versions of the superclass's method after type
erasure. In order to make overriding work the compiler adds bridge methods.

The compiler must add bridge methods even if the subclass does not override the inherited methods.

Example (before type erasure):

class Superclass<T extends Bound> {
 public void m1(T arg) { ... }
 public T m2() { ... }
}
class AnotherSubclass extends Superclass<SubTypeOfBound> {
}

Example (after type erasure):

class Superclass {
 void m1(Bound arg) { ... }
 Bound m2() { ... }
}
class AnotherSubclass extends Superclass {
 public void m1(Bound arg) { super.m1((SubTypeOfBound)arg); }
 public Bound m2() { return super.m2(); }
}

The subclass is derived from a particular instantiation of the superclass and therefore inherits the methods with a particular signature. After type erasure the
signature of the superclass's methods are different from the signatures that the subclass is supposed to have inherited. The compiler adds bridge methods, so that the
subclass has the expected inherited methods.

No bridge method is needed when type erasure does not change the signature of any of the methods of the parameterized supertype. Also, no bridge method is
needed if the signatures of methods in the sub- and supertype change in the same way. This can occur when the subtype is generic itself.

Example (before type erasure):

interface Callable<V> {
 public V call();
}
class Task<T> implements Callable<T> {
 public T call() { ... }

}

Example (after type erasure):

interface Callable {
 public Object call();
}
class Task implements Callable {
 public Object call() { ... }
}

The return type of the call method changes during type erasure in the interface and the implementing class. After type erasure the two methods have the same
signature so that the subclass's method implements the interface's method without a brdige method.

However, it does not suffice that the subclass is generic. The key is that the method signatures must not match after type erasure. Otherwise, we again need a
bridge method.

Example (before type erasure):

interface Copyable<V> extends Cloneable {
 public V copy();
}
class Triple<T extends Copyable<T>> implements Copyable<Triple<T>> {
 public Triple<T> copy() { ... }
}

Example (after type erasure):

interface Copyable extends Cloneable {
 public Object copy();
}
class Triple implements Copyable {
 public Triple copy() { ... }
 public Object copy() { return copy(); }
}

The method signatures change to Object copy() in the interface and Triple copy() in the subclass. As a result, the compiler adds a bridge method.

LINK TO THIS Technicalities.FAQ103

REFERENCES What is type erasure?

Why does the compiler add casts when it translates generics?

Because the return type of methods of a parameterized type might change as a side effect of type erasure.

During type erasure the compiler replaces type parameters by the leftmost bound, or type Object if no bound was specified. This means that methods whose return
type is the type parameter would return a reference that is either the leftmost bound or Object, instead of the more specific type that was specified in the
parameterized type and that the caller expects. A cast is need from the leftmost bound or Object down to the more specific type..

Example (before type erasure):

public class Pair<X,Y> {
 private X first;
 private Y second;
 public Pair(X x, Y y) {
 first = x;
 second = y;
 }
 public X getFirst() { return first; }
 public Y getSecond() { return second; }
 public void setFirst(X x) { first = x; }
 public void setSecond(Y y) { second = y; }
}

final class Test {
 public static void main(String[] args) {
 Pair<String,Long> pair = new Pair<String,Long>("limit", 10000L);
 String s = pair.getFirst();
 Long l = pair.getSecond();
 Object o = pair.getSecond();
 }
}

Example (after type erasure):

public class Pair {
 private Object first;
 private Object second;
 public Pair(Object x, Object y) {
 first = x;
 second = y;
 }
 public Object getFirst() { return first; }
 public Object getSecond() { return second; }
 public void setFirst(Object x) { first = x; }
 public void setSecond(Object y) { second = y; }
}

final class Test {
 public static void main(String[] args) {
 Pair pair = new Pair("limit", 10000L);
 String s = (String) pair.getFirst();

 Long l = (Long) pair.getSeond();
 Object o = pair.getSecond();
 }
}

After type erasure the methods getFirst and getSecond of type Pair both have the return type Object. Since the declared static type of the pair in our test case is
Pair<String,Long> the caller of getFirst and getSecond expects a String and a Long as the return value. Without a cast this would not work and in order to
make it work the compiler adds the necessary casts from Object to String and Long respectively.

The inserted casts cannot fail at runtime with a ClassCastException because the compiler already made sure at compile-time that both fields are references to
objects of the expected type. The compiler would issue an error method if arguments of types other than String or Long had been passed to the constructor or the
set methods. Hence it is guarantees that these casts cannot fail.

In general, casts silently added by the compiler are guaranteed not to raise a ClassCastException if the program was compiled without warnings. This is the type-
safety guarantee.

Implicit casts are inserted when methods are invoked whose return type changed during type erasure. Invocation of methods whose argument type changed during
type erasure do not require insertion of any casts. For instance, after type erasure the setFirst and setSecond methods of class Pair take Object arguments.
Invoking them with arguments of a more specific type such as String and Long is possible without the need for any casts.

LINK TO THIS Technicalities.FAQ104

REFERENCES What is type erasure?
What does type-safety mean?

How does type erasure work when a type parameter has several bounds?

The compiler adds casts as needed.

In the process of type erasure the compiler replaces type parameters by their leftmost bound, or type Object if no bound was specified. How does that work if a type
parameter has several bounds?

Example (before type erasure):

interface Runnable {
 void run();
}
interface Callable<V> {
 V call();
}
class X<T extends Callable<Long> & Runnable> {
 private T task1, task2;
 ...
 public void do() {

 task1.run();
 Long result = task2.call();
 }
}

Example (after type erasure):

interface Runnable {
 void run();
}
interface Callable {
 Object call();
}
class X {
 private Callable task1, task2;
 ...
 public void do() {
 ((Runnable)task1).run();
 Long result = (Long) task2.call();
 }
}

The type parameter T is replaced by the bound Callable, which means that both fields are held as references of type Callable. Methods of the leftmost bound
(which is Callable in our example) can be called directly. For invocation of methods of the other bounds (Runnable in our example) the compiler adds a cast to
the respective bound type, so that the methods are accessible. The inserted cast cannot fail at runtime with a ClassCastException because the compiler already
made sure at compile-time that both fields are references to objects of a type that is within both bounds.

 In general, casts silently added by the compiler are guaranteed not to raise a ClassCastException if the program was compiled without warnings. This is the type-
safety guarantee.

LINK TO THIS Technicalities.FAQ105

REFERENCES What does type-safety mean?

What is a reifiable type?

A type whose type information is fully available at runtime, that is, a type that does not lose information in the course of type erasure.

As a side effect of type erasure, some type information that is present in the source code is no longer available at runtime. For instance, parameterized types are
translated to their corresponding raw type in a process called type erasure and lose the information regarding their type arguments.

For example, types such as List<String> or Pair<? extends Number, ? extends Number> are available to and used by the compiler in their exact form,
including the type argument information. After type erasure, the virtual machine has only the raw types List and Pair available, which means that part of the type
information is lost.

In contrast, non-parameterized types such as java.util.Date or java.lang.Thread.State are not affected by type erasure. Their type information remains exact,
because they do not have type arguments.

Among the instantiations of a generic type only the unbounded wildcard instantiations, such as Map<?,?> or Pair<?,?>, are unaffected by type erasure. They do
lose their type arguments, but since all type arguments are unbounded wildcards, no information is lost.

Types that do NOT lose any information during type erasure are called reifiable types. The term reifiable stems from reification. Reification means that type
parameters and type arguments of generic types and methods are available at runtime. Java does not have such a runtime representation for type arguments because
of type erasure. Consequently, the reifiable types in Java are only those types for which reification does not make a difference, that is, the types that do not need
any runtime representation of type arguments.

The following types are reifiable:

primitive types
non-generic (or non-parameterized) reference types
unbounded wildcard instantiations
raw types
arrays of any of the above

The non-reifiable types, which lose type information as a side effect of type erasure, are:

instantiations of a generic type with at least one concrete type argument
instantiations of a generic type with at least one bounded wildcard as type argument

Reifiable types are permitted in some places where non-reifiable types are disallowed. Reifiable types are permitted (and non-reifiable types are prohibited):

as type in an instanceof expression
as component type of an array

LINK TO THIS Technicalities.FAQ106

REFERENCES What is type erasure?
What is reification?
What is an unbounded wildcard parameterized type?
What is the raw type?
Which types can or must not appear as target type in an instanceof expression?
Can I create an array whose component type is a concrete parameterized type?
Can I create an array whose component type is a wildcard parameterized type?
Why is it allowed to create an array whose component type is an unbounded wildcard parameterized type?

What is the type erasure of a parameterized type?

The type without any type arguments.

The erasure of a parameterized type is the type without any type arguments (i.e. the raw type). This definition extends to arrays and nested types.

Examples:

parameterized type type erasure
List<String> List

Map.Entry<String,Long> Map.Entry

Pair<Long,Long>[] Pair[]

Comparable<? super Number> Comparable

The type erasure of a non-parameterized type is the type itself.

LINK TO THIS Technicalities.FAQ107

REFERENCES What is the raw type?

What is the type erasure of a type parameter?

The type erasure of its leftmost bound, or type Object if no bound was specified.

The type erasure of a type parameter is the erasure of its leftmost bound. The type erasure of an unbounded type parameter is type Object.

Examples:

type parameters type erasure
<T> Object

<T extends Number> Number

<T extends Comparable<T>> Comparable

<T extends Cloneable & Comparable<T>> Cloneable

<T extends Object & Comparable<T>> Object

<S, T extends S> Object,Object

LINK TO THIS Technicalities.FAQ108

REFERENCES What is a bounded type parameter?

What is the type erasure of a generic method?

A method with the same name and the types of all method parameters replaced by their respective type erasures.

The erasure of a method signature is a signature consisting of the same name and the erasures of all the formal method parameter types.

Examples:

parameterized method type erasure
Iterator<E> iterator() Iterator iterator()

<T> T[] toArray(T[] a) Object[] toArray(Object[] a)

<U> AtomicLongFieldUpdater<U>
newUpdater(Class<U> tclass, String fieldName)

AtomicLongFieldUpdater
newUpdater(Class tclass,String fieldName)

LINK TO THIS Technicalities.FAQ109

REFERENCES What is type erasure?
What is the type erasure of a parameterized type?
What is the type erasure of a type parameter?

Is generic code faster or slower than non-generic code?

There is no perceivable difference.

Some programmers, especially those with a C++ background, expect that generic code should perform much faster than non-generic code, because this is one
observable benefit of using templates in C++. Other programmers assume that the synthetic bridge methods and implicit casts inserted by the compiler in the
process of type erasure would degrade the runtime performance of generic code. Which one is true?

The short answer is: it is likely that one will find neither a substantial difference in runtime performance nor any consistent trend. However, this has not yet been
verified by any benchmarks I know of. Nevertheless, let us take a look at the various overlapping effects that might explain such a statement.

Implicit casts.

The casts added by the compiler are exactly the casts that would appear in non-generic code. Hence the implicit casts do not add any overhead.

Example (generic code):

List<String> list = new List<String>();
list.add("abc");
String s = list.get(0);

Example (after type erasure):

Example (non-generic code):

List list = new LinkedList();
list.add("abc");
String s = (String)list.get(0);

List list = new LinkedList();
list.add("abc");
String s = (String)list.get(0);

The non-generic code is exactly what the compiler generates in the process of type erasure, hence there is no difference in performance.

Bridge methods.

The compiler adds bridge methods. These synthetic methods cause an additional method invocation at runtime, they are represented in the byte code and increase its
volume, and they add to the memory footprint of the program.

Example (generic code):

final class Byte implements Comparable<Byte> {
 private byte value;
 public Byte(byte value) {
 this.value = value;
 }
 public byte byteValue() { return value; }
 public int compareTo(Byte that) {
 return this.value - that.value;
 }
}

Example (after type erasure):

final class Byte implements Comparable {
 private byte value;
 public Byte(byte value) {
 this.value = value;
 }
 public byte byteValue() { return value; }
 public int compareTo(Byte that) {
 return this.value - that.value;
 }
 public int compareTo(Object that) {
 return this.compareTo((Byte)that);
 }
}

Example (non-generic code):

final class Byte implements Comparable {
 private byte value;
 public Byte(byte value) {
 this.value = value;
 }
 public byte byteValue() { return value; }
 public int compareTo(Object that) {
 return this.value - ((Byte)that).value;
 }
}

It is likely that there is a slight performance penalty for the bridge method that affects runtime execution and class loading. However, only new (i.e. 5.0) source
code is affected. If we compile legacy (i.e. 1.4-compatible) source code, there are no additional bridge methods and the byte code should be identical, more or less,
to the way it was before. Most likely the slight performance penalty is compensated for by improvements in Hotspot.

Runtime type information.

Static information about type parameters and their bounds is made available via reflection. This runtime type information adds to the size of the byte code and the
memory footprint, because the information must be loaded into memory at runtime. Again, this only affects new (i.e. 5.0) source code. On the other hand, there are
some enhancements to reflection that apply even to existing language features, and those do require slightly larger class files, too. At the same time, the
representation of runtime type information has been improved. For example, there is now an access bit for "synthetic" rather than a class file attribute, and class
literals now generate only a single instruction. These things often balance out. For any particular program you might notice a very slight degradation in startup time
due to slightly larger class files, or you might find improved running time because of shorter code sequences. Yet it is unlikely that one will find any large or
consistent trends.

Compilation time.

Compiler performance might decrease because translating generic source code is more work than translating non-generic source code. Just think of all the static
type checks the compiler must perform for generic types and methods. On the other hand, the performance of a compiler is often more dominated by its
implementation techniques rather than the features of the language being compiled. Again, it is unlikely that one will find any perceivable or measurable trends.

LINK TO THIS Technicalities.FAQ110

REFERENCES How does the compiler translate Java generics?
What is type erasure?
What is a bridge method?
Why does the compiler add casts when it translates generics?

How do I compile generics for use with JDK <= 1.4?

Use a tool like Retroweaver.

Retroweaver is a Java bytecode weaver that enables you to take advantage of the new 1.5 language features in your source code, while still retaining compability
with 1.4 virtual machines. Retroweaver rewrites class files so that they are compatible with older virtual machines. Check out
http://sourceforge.net/projects/retroweaver.

LINK TO THIS Technicalities.FAQ111

REFERENCES How does the compiler translate Java generics?
Retroweaver Download Page

http://sourceforge.net/projects/retroweaver
http://sourceforge.net/projects/retroweaver

Type System

How do parameterized types fit into the Java type system?

Instantiations of generic types have certain super-subtype relationship among each other and have a type relationship to their respective raw type. These type
relationships are relevant for method invocation, assignment and casts.

Relevance of type relationships and type converstion rules in practice.

The type system of a programming language determines which types are convertible to which other types. These conversion rules have an impact on various areas
of a programming language. One area where conversion rules and type relationships play role is casts and instanceof expressions. Other area is assignment
compatibility and method invocation, where argument and return value passing relies on convertibility of the involved types.

The type conversion rules determine which casts are accepted and which ones are rejected. For example, the types String and Integer have no relationship and
for this reason the compiler rejects the attempt of a cast from String to Integer, or vice versa. In contrast, the types Number and Integer have a super-subtype
relationship; Integer is a subtype of Number and Number is a supertype of Integer. Thanks to this relationship, the compiler accepts the cast from Number to
Integer, or vice versa. The cast from Integer to Number is not even necessary, because the conversion from a subtype to a supertype is considered an implicit
type conversion, which need not be expressed explicitly in terms of a cast; this conversion is automatically performed by the compiler whenever necessary. The
same rules apply to instanceof expressions.

The conversion rules define which types are assignment compatible. Using the examples from above, we see that a String cannot be assigned to an Integer
variable, or vice versa, due to the lack of a type relationship. In contrast, an Integer can be assigned to a Number variable, but not vice versa. A side effect of the
super-subtype relationship is that we can assign a subtype object to a supertype variable, without an explicit cast anywhere. This is the so-called widening reference
conversion; it is an implicit conversion that the compiler performs automatically whenever it is needed. The converse, namely assignment of a supertype object to a
subtype variable, is not permitted. This is because the so-called narrowing reference conversion is not an implicit conversion. It can only be triggered by an
explicit cast.

The rules for assignment compatibility also define which objects can be passed to which method. An argument can be passed to a method if its type is assignment
compatible to the declared type of the method parameter. For instance, we cannot pass an Integer to a method that asks for String, but we can pass an Integer to
a method that asks for a Number. The same rules apply to the return value of a method.

Super-subtype relationships of parameterized types.

In order to understand how objects of parameterized types can be used in assignments, method invocations and casts, we need an understanding of the relationship
that parameterized types have among each other and with non-parameterized types. And we need to know the related conversion rules.

We already mentioned super-subtype relationships and the related narrowing and widening reference conversions. They exist since Java was invented, that is,
among non-generic types. The super-subtype relationship has been extended to include parameterized types. In the Java 5.0 type system super-subtype
relationships and the related narrowing/widening reference conversions exist among parameterized types, too. We will explain the details in separate FAQ entries.
Here are some initial examples to get a first impression of the impact that type relationships and conversion rules have on method invocation.

Consider a method whose declared parameter type is a wildcard parameterized type. A wildcard parameterized type acts as supertype of all members of the type
family that the wildcard type denotes.

Example (of widening reference conversion from concrete instantiation to wildcard instantiation):

void printAll(LinkedList<? extends Number> c) { ... }

LinkedList<Long> l = new LinkedList<Long>();
...
printAll(l); // widening reference conversion

We can pass a List<Long> as an argument to the printAll method that asks for a LinkedList<? extends Number>. This is permitted thanks to the super-subtype
relationship between a wildcard instantiation and a concrete instantiation. LinkedList<Long> is a member of the type family denoted by LinkedList<? extends
Number>, and as such a LinkedList<Long> is a subtype of LinkedList<? extends Number>. The compiler automatically performs a widening conversion from
subtype to supertype and thus allows that a LinkedList<Long> can be supplied as argument to the printAll method that asks for a LinkedList<? extends
Number>.

Note that this super-subtype relationship between a wildcard instantiation and a member of the type family that the wildcard denotes is different from inheritance.
Inheritance implies a super-subtype relationship as well, but it is a special case of the more general super-subtype relationship that involves wildcard instantiations.

We know inheritance relationships from non-generic Java. It is the relationship between a superclass and its derived subclasses, or a super-interface and its sub-
interfaces, or the relationship between an interface and its implementing classes. Equivalent inheritance relationships exists among instantiations of different
generic types. The prerequisite is that the instantiations must have the same type arguments. Note that this situation differs from the super-subtype relationship
mentioned above, where we discussed the relationship between wildcard instantiations and concrete instantiations of the same generic type, whereas we now talk of
the relationship between instantiations of different generic types with identical type arguments.

Example (of widening reference conversion from one concrete parameterized type to another concrete parameterized type):

void printAll(Collection<Long> c) { ... }

LinkedList<Long> l = new LinkedList<Long>();
...
printAll(l); // widening reference conversion

The raw types Collection and LinkedList have a super-subtype relationship; Collection is a supertype of LinkedList. This super-subtype relationship among
the raw types is extended to the parameterized types, provided the type arguments are identical: Collection<Long> is a supertype of LinkedList<Long>,
Collection<String> is a supertype of LinkedList<String>, and so on.

It is common that programmers believe that the super-subtype relationship among type arguments would extend into the respective parameterized type. This is not
true. Concrete instantiations of the same generic type for different type arguments have no type relationship. For instance, Number is a supertype of Integer, but
List<Number> is not a supertype of List<Integer>. A type relationship among different instantiations of the same generic type exists only among wildcard
instantiations and concrete instantiations, but never among concrete instantiations.

Example (of illegal attempt to convert between different concrete instantiations of the same generic type):

void printAll(LinkedList<Number> c) { ... }

LinkedList<Long> l = new LinkedList<Long>();
...
printAll(l); // error; no conversion

Due to the lack of a type relationship between LinkedList<Number> and LinkedList<Long> the compiler cannot convert the LinkedList<Long> to a
LinkedList<Number> and the method call is rejected with an error message.

Unchecked conversion of parameterized types.

With the advent of parameterized types a novel category of type relationship was added to the Java type system: the relationship between a parameterized type and
the corresponding raw type. The conversion from a parameterized type to the corresponding raw type is a widening reference conversion like the conversion from a
subtype to the supertype. It is an implicit conversion. An example of such a conversion is the conversion from a parameterized type such as List<String> or
List<? extends Number> to the raw type List. The counterpart, namely the conversion from the raw type to an instantiation of the respective generic type, is the
so-called unchecked conversion. It is an automatic conversion, too, but the compiler reports an "unchecked conversion" warning. Details are explained in separate
FAQ entries. Here are some initial examples to get a first impression of usefulness of unchecked conversions. They are mainly permitted for compatibility between
generic and non-generic source code.

Below is an example of a method whose declared parameter type is a raw type. The method might be a pre-Java-5.0 method that was defined before generic and
parameterized types had been available in Java. For this reason it declares List as the argument type. Now, in Java 5.0, List is a raw type.

Example (of a widening reference conversion from parameterized type to raw type):

void printAll(List c) { ... }

List<String> l = new LinkedList<String>();
...
printAll(l); // widening reference conversion

Source code such as the one above is an example of a fairly common situation, where non-generic legacy code meets generic Java 5.0 code. The printAll method
is an example of legacy code that was developed before Java 5.0 and uses raw types. If more recently developed parts of the program use instantiations of the
generic type List, then we end up passing an instantiation such as List<String> to the printAll method that declared the raw type List as its parameter type.
Thanks to the type relationship between the raw type and the parameterized type, the method call is permitted. It involves an automatic widening reference
conversion from the parameterized type to the raw type.

Below is an example of the conversion in the opposite direction. We consider a method has a declared parameter type that is a parameterized type. We pass a raw
type argument to the method and rely on an unchecked conversion to make it work.

Example (of an unchecked conversion from raw type to parameterized type):

void printAll(List<Long> c) { ... }

List l = new LinkedList();
...
printAll(l); // unchecked conversion

Like the previous example, this kind of code is common in situation where generic and non-generic code are mixed.

The subsequent FAQ entries discuss details of the various type relationships and conversions among raw types, concrete parameterized types, bounded and
unbounded wildcard parameterized types.

LINK TO THIS Technicalities.FAQ201

REFERENCES What is the raw type?
What is a wildcard parameterized type?
Which super-subtype relationships exist among instantiations of generic types?
How does the raw type relate to instantiations of the corresponding generic type?
How do instantiations of a generic type relate to instantiations of other generic types that have the same type argument?
How do unbounded wildcard instantiations of a generic type relate to other instantiations of the same generic type?
How do wildcard instantiations with an upper bound relate to other instantiations of the same generic type?
How do wildcard instantiations with a lower bound relate to other instantiations of the same generic type?

How does the raw type relate to instantiations of the corresponding generic type?

The raw type is the supertype of all instantiations of the corresponding generic type.

The raw types have the regular supertype-subtype relationship with other raw types. For illustration we use the collection classes and interfaces from the JDK (see
package java.util).

In addition, the raw types are supertypes of all concrete and all wildcard instantiations of the generic type. For instance, the raw type Collection is a supertype of
all instantiations of the generic type Collection.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/package-summary.html

With both properties combined a raw type is the supertype of all instantiations of all its generic and non-generic subtypes. For instance, the raw type Collection
is a supertype of all instantiations of all generic collection classes.

Regarding conversions, the usual reference widening conversion from subtype to supertype is allowed. That is, every instantiation of a generic type can be
converted to the corresponding raw type. The reverse is permitted, too, for reasons of compatibility between generic and non-generic types. It is the so-called
unchecked conversion and is accompanied by an "unchecked" warning. In detail, the conversion from a raw type to a concrete or bounded wildcard instantiation of
the corresponding generic type leads to a warning. The conversion from the raw type to the unbounded wildcard instantiation is warning-free.

LINK TO THIS Technicalities.FAQ202

REFERENCES How do parameterized types fit into the Java type system?
What is the raw type?
What is a concrete paramterized type?
What is a wildcard parameterized type?
What is the unbounded wildcard parameterized type?
Which super-subtype relationships exist among instantiations of generic types?

How do instantiations of a generic type relate to instantiations of other generic types that have the same type argument?

An instantiation of a generic type is the supertype of all instantiations of generic subtypes that have the same type argument.

Instantiations of the generic types have supertype-subtype relationships with concrete instantiations of generic subtypes provided they all have the exact same type
arguments. The example below uses the JDK collection types (see package java.util) for illustration.

The diagram illustrates the super-subtype relationship among instantiations that have the same type argument. The type argument can be a concrete type, but also a
bounded or unbounded wildcard. For instance, Collection<Number> is the supertype of List<Number> and LinkedList<Number>, Collection<? extends
Number> is the supertype of List<? extends Number> and LinkedList<? extends Number>, Collection<?> is the supertype of List<?> and LinkedList<?>,
and so on.

Type relationships to other concrete instantiations do not exist. In particular, the supertype-subtype relationship among the type arguments does not extend to the
instantiations. For example, Collection<Number> is NOT a supertype of Collection<Long>.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/package-summary.html

Regarding conversions, the usual reference widening conversion from subtype to supertype is allowed. The reverse is not permitted.

LINK TO THIS Technicalities.FAQ203

REFERENCES How do parameterized types fit into the Java type system?
What is the raw type?
What is a concrete parameterized type?
What is a wildcard parameterized type?
What is the unbounded wildcard parmeterized type?
Which super-subtype relationships exist among instantiations of generic types?

How do unbounded wildcard instantiations of a generic type relate to other instantiations of the same generic type?

An unbounded wildcard instantiation is the supertype of all instantiations of the generic type.

The unbounded wildcard instantiation of a generic type is supertype of all concrete and all wildcard instantiations of the same generic type.
For instance, the unbounded wildcard instantiation Collection<?> is supertype of all instantiations of the generic type Collection. The example below uses the
JDK collection types (see package java.util) for illustration.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/package-summary.html

At the same, an unbounded wildcard instantiation is supertype of all unbounded instantiations of any generic subtypes. For instance, the unbounded wildcard
instantiationCollection<?> is supertype of List<?>, LinkedList<?>, and so on. Both type relationships combined, an unbounded wildcard instantiation is
supertype of all instantiations of the same generic type and of all instantiations of all its generic subtypes.

Regarding conversions, the usual reference widening conversion from subtype to supertype is allowed. The reverse is not permitted.

There is one special rules for unbounded wildcard instantiations: the conversion from a raw type to the unbounded wildcard instantiation is not an "unchecked"
conversion, that is, the conversion from Collection to Collection<?> does not lead to an "unchecked" warning. This is different for concrete and bounded
instantiations, where the conversion from the raw type to the concrete and bounded wildcard instantiation leads to an "unchecked" warning.

LINK TO THIS Technicalities.FAQ204

REFERENCES How do parameterized types fit into the Java type system?
Which super-subtype relationships exist among instantiations of parameterized types?
What is the raw type?
What is a concrete parmeterizd type?
What is a wildcard parameterized type?
What is the unbounded wildcard parameterized type?
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?

How do wildcard instantiations with an upper bound relate to other instantiations of the same generic type?

A wildcard instantiation wild an upper bound is supertype of all instantiations of the same generic type where the type argument is a subtype of the upper
bound.

An upper bound wildcard instantiation is supertype of all concrete instantiations with type arguments that are subtypes of the upper bound, the upper bound itself
being included. For instance, Collection<? extends Number> is supertype of Collection<Number>, Collection<Long>, Collection<Short>, etc., because
Number, Long, and Short are subtypes (or same type) of Number. The underlying idea is: a subtype of the upper bound (e.g. Long) belongs to the family of types that
the wildcard (e.g. ? extends Number) stands for and in this case the wildcard instantiation (e.g. Collection<? extends Number>) is a supertype of the concrete
instantiation on the subtype of the upper bound (e.g. Collection<Long>).

At the same time, a wildcard instantiation with an upper bound is supertype of all generic subtypes that are instantiated on the same upper bound wildcard. For
instance, Collection<? extends Number> is supertype of Set<? extends Number> and ArrayList<? extends Number>.

The upper bound wildcard instantiation is also supertype of other upper bound wildcard instantiation with an upper bound that is a subtype of the own upper bound.
For instance, Collection<? extends Number> is supertype of Collection<? extends Long> and Collection<? extend Short>, because Long and Short are
subtypes of Number.

Similarly, Collection<? extends Comparable<?>> is supertype of Collection<? extends Number> and Collection<? extends Delayed>, because Number is
a subtype of Comparable<Number>, which is a subtype of Comparable<?>, and Delayed (see java.util.concurrent.Delayed) is a subtype of
Comparable<Delayed>, which is a subtype of Comparable<?>. The idea is that if the upper bound of one wildcard is a supertype of the upper bound of another
wildcard then the type family with the supertype bound includes the type family with the subtype bound. If one family of types (e.g. ? extends Comparable<?>)
includes the other (e.g. ? extends Number> and ? extends Delayed) then the wildcard instantiation on the larger family (e.g. Collection<? extends
Comparable<?>>) is supertype of the wildcard instantiation of the included family (e.g. Collection<? extends Number>).

All these type relationships combined make a bounded wildcard instantiation supertype of a quite a number of instantiations of the same generic type and subtypes
thereof.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Delayed.

Regarding conversions, the usual reference widening conversion from subtype to supertype is allowed. The reverse is not permitted.

LINK TO THIS Technicalities.FAQ205

REFERENCES How do parameterized types fit into the Java type system?
Which super-subtype relationships exist among instantiations of parameterized types?
What is the raw type?
What is a concrete parameterized type?
What is a wildcard parameterized type?
What is the unbounded wildcard parameterized type?
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?

How do wildcard instantiations with a lower bound relate to other instantiations of the same generic type?

A wildcard instantiation wild a lower bound is supertype of all instantiations of the generic type where the type argument is a supertype of the lower bound.

A wildcard instantiation with a lower bound is supertype of all concrete instantiation with type arguments that are supertypes of the lower bound, the lower bound
itself included. For instance, Collection<? super Number> is supertype of Collection<Number>, Collection<Serializable>, and Collection<Object>,
because Number, Serializable and Object are supertypes (or same type) of Number. The underlying idea is: a supertype of the lower bound (e.g. Object) belongs
to the family of types that the wildcard (e.g. ? super Number) stands for and in this case the wildcard instantiation (e.g. Collection<? super Number>) is a
supertype of the concrete instantiation on the supertype of the lower bound (e.g. Collection<Object>).

At the same time, a wildcard instantiation with a lower bound is supertype of parameterized subtypes that are instantiated on the same lower bound wildcard. For
instance, Collection<? super Number> is supertype of Set<? super Number> and ArrayList<? super Number>.

The lower bound wildcard instantiation is also supertype of other lower bound wildcard instantiation with a lower bound bound that is a supertype of the own lower
bound. For instance, Collection<? super Number> is supertype of Collection<? super Serializable>, because Serializable is a supertype of Number. The
idea is that if the lower bound of one wildcard is a subtype of the lower bound of another wildcard then the type family with the subtype bound includes the type
family with the supertype bound. If one family of types (e.g. ? super Number) includes the other (e.g. ? super Serializable) then the wildcard instantiation on
the larger family (e.g. Collection<? super Number>) is supertype of the wildcard instantiation of the included family (e.g. Collection<? super
Serializable>).

Regarding conversions, the usual reference widening conversion from subtype to supertype is allowed. The reverse is not permitted.

LINK TO THIS Technicalities.FAQ206

REFERENCES How do parameterized types fit into the Java type system?
Which super-subtype relationships exist among instantiations of parameterized types?

What is the raw type?
What is a concrete parameterized type?
What is a wildcard parameterized type?
What is the unbounded wildcard parameterized type?
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?

Which super-subtype relationships exist among instantiations of generic types?

This is fairly complicated and the type relationships are best determined setting up tables as explained in this FAQ entry.

Super-subtype relationships among instantiations of generic types are determined by two orthogonal aspects.

On the one hand, there is the inheritance relationship between a supertype and a subtype. This is the usual notion of inheritance as we know it from non-generic
Java. For instance, the interface Collection is a supertype of the interface List. This inheritance relationship is extended in analogy to instantiations of generic
types, i.e. to parameterized types. The prerequisite is that the instantiations must have identical type arguments. An example is the supertype Collection<Long>
and its subtype List<Long>. The rule is: as long as the type arguments are identical, the inheritance relationship among generic types leads to a super-subtype
relationship among corresponding parameterized types.

On the other hand, there is a relationship based on the type arguments. The prerequisite is that at least one of the involved type arguments is a wildcard. For
example, Collection<? extends Number> is a supertype of Collection<Long>, because the type Long is a member of the type family that the wildcard "?
extends Number" denotes.

This kind of type relationship also exists between two wildcard instantiations of the same generic type with different wildcards as type arguments. The prerequisite
is that the type family denoted by one wildcard is a superset of the type family denoted by the other wildcard. For example, Collection<?> is a supertype of
Collection<? extends Number>, because the family of types denoted by the wildcard "?" is a superset of the family of types denoted by the wildcard "? extends
Number". The super-subset relationship among the type arguments leads to a super-subtype relationship among corresponding instantiations of the same
parameterized type. The type relationship mentioned above, between a wildcard instantiation and a concrete instantiation of the same generic type, is a special case
of this rule; you just interpret the concrete type argument as a type family with only one member, namely the concrete type itself.

Both effects - the super-subtype relationship due to inheritance and the super-subtype relationship due to type arguments - are combined and lead to a two-
dimensional super-subtype relationship table. The tables below use examples for illustration.

The vertical axis of the table lists parameterized types according to their inheritance relationship, starting with the supertype on the top to a subtype on the bottom.
The horizontal axis lists type arguments according to their super-subset relationship of the type families they denote, starting with the largest type set on the lefthand
side to the smallest type set on the righthand side.

? ? extends Serializable ? extends Number Long

Collection Collection<?> Collection<? extends Serializable> Collection<? extends Number> Collection<Long>

List List<?> List<? extends Serializable> List<? extends Number> List<Long>

ArrayList ArrayList<?> ArrayList<? extends Serializable> ArrayList<? extends Number> ArrayList<Long>

If you pick a certain entry in the table, say List<? extends Serializable>, then the subtable to the bottom and to the right contains all subtypes of the entry.

Below is another example that involves lower bound wildcards. Again, the horizontal axis lists type arguments according to their super-subset relationship of the
type families they denote, starting with largest set of types denoted by the unbounded wildcard "?" over type families of decreasing size to a type set consisting of
one concrete type. The difficulty with lower bound wildcards is that the super-subset relationship of the type families denoted by lower bound wildcards is slightly
counter-intuitive to determine. Details are discussed in a separate FAQ entry.

? ? super Long ? super Number Object

Collection Collection<?> Collection<? super Long> Collection<? super Number> Collection<Object>

List List<?> List<? super Long> List<? super Number> List<Object>

ArrayList ArrayList<?> ArrayList<? super Long> ArrayList<? super Number> ArrayList<Object>

If you pick a certain entry in the table, say List<? super Long>, then the subtable to the bottom and to the right contains all subtypes of the entry and you would
find information such as: ArrayList<? super Number> is a subtype of List<? super Long>.

Generic Types With More Than One Type Parameter

We have been setting up tables to determine the super-subtype relationships among different instantiations of different, yet related parameterized types. These
tables were two-dimensional because we took into account inheritance on the one hand and various values for a type argument on the other hand. A similar
technique can be applied to parameterized types with more than one type parameter.

The example below uses a generic class Pair with two type parameters. The vertical axis lists the first type arguments order by their super-subset relationship from
the largest type set to the smallest type set. The horizontal axis does the same for the second type argument.

? ? super Long ? super Number Object

? Pair<?,?> Pair<?,? super Long> Pair<?,? super Number> Pair<?,Object>

? extends
Serializable

Pair<? extends
Serializable,?>

Pair<? extends Serializable,?
super Long>

Pair<? extends Serializable,?
super Number>

Pair<? extends
Serializable,Object>

? extends
Number

Pair<? extends
Number,?>

Pair<? extends Number,? super
Long>

Pair<? extends Number,? super
Number>

Pair<? extends
Number,Object>

Long Pair<Long,?> Pair<Long,? super Long> Pair<Long,? super Number> Pair<Long,Object>

Tables with more than two dimensions can be set up in analogy. The key point is that you list generic types from supertype to subtype and type arguments from
superset to subset. For this purpose you need to interpret type arguments as sets of types and determine their super-subtype relationships. Note that the latter can be
rather counter-intuitive in case of multi-level wildcards involving lower bounds. Details are discussed in a separate FAQ entry.

LINK TO THIS Technicalities.FAQ207

REFERENCES How do parameterized types fit into the Java type system?
Which super-subset relationships exist among wildcards?
What is the raw type?
What is a concrete parameterized type?
What is a wildcard parameterized type?
What is the unbounded wildcard parameterized type?

Which super-subset relationships exist among wildcards?

A super-subtype relationship between upper bounds leads to a super-subset relationship between the resulting upper bound wildcards, and vice versa for a lower
bounds.

A wildcard denotes a family (or set) of types. These type sets can have super-subset relationships, namely when one type set includes the other type set. The super-
subset relationship among wildcards determines the super-subtype relationships of instantiations of parameterized types using these wildcards as type arguments.
The super-subtype relationships among instantiations of parameterized types play an important role in method invocation, assignments, type conversions, casts and
type checks (as was discussed in a previous FAQ entry). For this reason, we need to know how to determine the super-subset relationships among the type sets
denoted by wildcards.

Here are the rules:

The unbounded wildcard "?" denotes the set of all types and is the superset of all sets denoted by bounded wildcards.
A wildcard with an upper bound A denotes a superset of another wildcard with an upper bound B, if A is a supertype of B.
A wildcard with a lower bound A denotes a superset of another wildcard with a lower bound B, if A is a subtype of B.
A concrete type denotes a set with only one element, namely the type itself.

upper bound wildcards lower bound wildcards

? ?

? extends SuperType ? super SubType

? extends SubType ? super SuperType

concrete type*
*either SubType or a subtype thereof

concrete type*
*either SuperType or a supertype thereof

Here are some examples illustrating the rules:

upper bound wildcards lower bound wildcards
? ?

? extends Serializable ? super Long

? extends Number ? super Number

Long Serializable

The wildcard "?" denotes the largest possible type set, namely the set of all types. It is the superset of all type sets.

Upper bound wildcards are fairly easy to understand, compared to lower bound wildcards. The wildcard "? extends Serializable" denotes the family of types
that are subtypes of Serializable, the type Serializable itself being included. Naturally, this type family is a subset of the type set denoted by the wildcard "?".

The wildcard "? extends Number" denotes the family of types that are subtypes of Number, the type Number itself being included. Since Number is a subtype of
Serializable, the type family "? extends Number" is a subset of the type family "? extends Serializable". In other words, the super-subtype relationship
between the upper bounds leads to a super-subset relationship between the resulting type sets.

The concrete type Long denotes a single-member type set, which is a subset of the type family "? extends Number" because Long is a subtype of Number.

Among the lower bound wildcards, the wildcard "? super Long" denotes the family of types that are supertypes of Long, the type Long itself being included. The
wildcard "? super Number" denotes the family of types that are supertypes of Number, the type Number itself being included. Number is a supertype of Long, and
for this reason the type family "? super Number" is smaller than the type family "? super Long"; the latter includes type Long as member, while the former
excludes it. In other words, the super-subtype relationship between the lower bounds leads to the opposite relationship between the resulting type sets, namely a
sub-superset relationship.

Multi-Level Wildcards

Matters are more complicated when it comes to multi-level wildcards. In principle, the rules outlined above are extended to multi-level wildcards in analogy.
However, the resulting super-subset relationships tend to be everything but intuitive to understand, so that in practice you will probably want to refrain from overly
complex multi-level wildcards. Nonetheless, we discuss in the following the rules for super-subset relationships among two-level wildcards.

For multi-level wildcards we apply the same rules as before. The only difference is that the bounds are wildcards instead of concrete types. As a result we do not
consider type relationships among the bounds, but set relationships.

A wildcard with an upper bound A denotes a superset of another wildcard with an upper bound B, if A denotes a superset of B.
A wildcard with a lower bound A denotes a superset of another wildcard with a lower bound B, if A denotes a subset of B.

The bounds A and B are wildcards and we can look up their super-subset relationships in the tables above, which leads us to the following tables for multi-level
wildcards:

 upper-upper bound wildcards upper-lower bound wildcards

? ?

? extends ParType<?> ? extends ParType<?>

? extends ParType<? extends SuperType> ? extends ParType<? super SubType>

? extends ParType<? extends SubType> ? extends ParType<? super SuperType>

? extends ParType<concrete type*>
*either SubType or a subtype thereof

? extends ParType<concrete type*>
*either SuperType or a supertype thereof

concrete type*<concrete type**>
*either ParType or a subtype thereof
**either SubType or a subtype thereof

concrete type*<concrete type**>
*either ParType or a subtype thereof
**either SuperType or a supertype thereof

 lower-upper bound wildcards lower-lower bound wildcards
? ?

? super ParType<concrete type*>
*either SubType or a subtype thereof

? super ParType<concrete type*>
*either SuperType or a supertype thereof

? super ParType<? extends SubType> ? super ParType<? super SuperType>

? super ParType<? extends SuperType> ? super ParType<? super SubType>

? super ParType<?> ? super ParType<?>

concrete type*<?>
*either ParType or a supertype thereof

concrete type*<?>
*either ParType or a supertype thereof

The rules look fairly complex, but basically it is a recursive process. For instance: the type set denoted by "? extendsParType<? extends SuperType>" is a
superset of the type set denoted by "? extends ParType<? extends SubType>" because the upper bound "? extends SuperType" is a superset of the upper
bound "? extends SubType", and this is because the inner upper bound SuperType is a supertype of the inner upper bound SubType. In this recursive way, the
super-subset relationships of multi-level wildcards can be made plausible. Here are some concrete examples:

Examples:

upper-upper bound wildcards upper-lower bound wildcards
? ?

? extends List<?> ? extends List<?>

? extends List<? extends Serializable> ? extends List<? super Long>

? extends List<? extends Number> ? extends List<? super Number>

? extends List<Long> ? extends List<Serializable>

ArrayList<Long> LinkedList<Serializable>

lower-upper bound wildcards lower-lower bound wildcards
? ?

? super List<Long> ? super List<Object>

? super List<? extends Number> ? super List<? super Serializable>

? super List<? extends Serializable> ? super List<? super Number>

? super List<?> ? super List<?>

Collection<?> Collection<?>

LINK TO THIS Technicalities.FAQ208

REFERENCES How do parameterized types fit into the Java type system?
Which super-subtype relationships exist among instantiations of parameterized types?
What is the raw type?
What is a concrete instantiation?
What is a wildcard instantiation?
What is the unbounded wildcard instantiation?

Does "extends" always mean "inheritance"?

No.

extends is an overloaded keyword in the Java programming language. It has different meanings, depending on the context in which it appears. The extends
keyword can appear in four different locations:

in the definition of a class
in the definition of an interface
in the definition of type parameter bounds
in the definition of wildcard bounds

Below we discuss each of these cases in detail. Basically it boils down to the observation that extends refers to more general super-subtype relationship, of which
inheritance is a special case. In conjunction with class and interface definitions extends means inheritance. In conjunction with type parameter bounds and
wildcard bounds extends it means either inheritance, or identity, or member of a type family denoted by a wildcard instantiation.

Definition of classes and interfaces

extends

Example (in the definition of a class):

public class Quadruple<T> extends Triple<T> {
 private T fth;
 public Triple(T t1, T t2, T t3, T t4) {
 super(T1, t2, t3);
 fth = t4;
 }
 ...
}

This is an example where extends means inheritance. We define a subclass Quadruple that is derived from a superclass Triple. This kind of inheritance exists
between non-generic and generic classes. It leads to a super-subtype relationship between the two types. In case of generic types it leads to a super-subtype
relationship between instantiations of the two types that have identical type arguments. For instance, Triple<Long> is a subtype of Triple<Long>, and
Quadruple<? extends Number> is a subtype of Triple<? extends Number>.

Example (extends in the definition of an interface):

public interface SortedSet<E> extends Set<E> {
 ...
}

This is another example where extends means inheritance. This time the inheritance relationship exists between two interfaces instead of two classes. We have the
super-subtype relationships as for classes.

Definition of type parameter bounds

Example (extends in the definition of type parameter bounds):

public class Caller<V, T extends Callable<V>> {
 public Caller(T task) {
 FutureTask<V> future = new FutureTask<V>(task);
 Thread thread = new Thread(future);
 thread.setDaemon(false);
 thread.start();
 try { System.out.println ("result: " + future.get()); }
 catch (Exception e) { e.printStackTrace(); }
 }
}

In this example extends does not mean inheritance. The extends keyword is here used to define the bounds of a type parameter. A common misunderstanding is
that the type argument that later replaces the type parameter in an instantiation must inherit from the bounds. This is often the case, but it is not the only option.

In our example, we can supply a sub-interface of Callable<V> as a type argument, that is, an interface that extends the bound. But we can also supply a class type
that implements the bound. In other words, extends in conjunction with type parameter bounds does not strictly mean inheritance, but it also includes the
implements-relationship that exists between classes and interfaces.

In conjunction with type parameter bounds the extends keyword refers to an even broader notion of subtyping. It includes relationships that cannot be expressed in
terms of extends or implementsas we know them from non-generic Java. Consider the following example.

Example (extends in the definition of a type parameter bound that is a final class):

public class SomeClass<T extends String> {
 ...
}

In this example the bound is a final class. Final classes cannot be inherited from. The only permitted type argument is type String, which is not a type that inherits
from the bound; it is the bound itself. When applied to a bound that is a final class, extends does not mean inheritance; it means identity.

Let us consider another example that demonstrates that extends in conjunction with type parameter bounds means more than inheritance.

Example (extends in the definition of a type parameter bound that is a wildcard parameterized type):

public class SomeClass<T extends Collection<?>> {
 ...
}

In this example the bound is a wildcard instantiation of the Collection interface. Wildcard parameterized types cannot be inherited from. In this case extends does
not mean inheritance either. It refers to the super-subtype relationship that exists among wildcard parameterized types and concrete parameterized type.
Conceivable type arguments would be concrete parameterized type, such as Collection<String> or List<Long>, but also other wildcard parameterized types, such
as Collection<? extends Number>. These type arguments do not inherit from the bound, but they are members of the type family that the bound denotes. When
applied to a bound that is a wildcard parameterized type, extends does not mean inheritance; it means member of the type family denoted by the wildcard
parameterized type.

Definition of wildcard bounds

Example (extends in the definition of a wildcard bound):

List<? extends Number> ref = new ArrayList<Number>();

The meaning of extends in conjunction with wildcard bounds is similar to the meaning of extends in conjuction with type parameter bounds. It does NOT mean
that the unknown type that the wildcard stands for (the so-called wildcard capture) must inherit from the wildcard bound. It can, but it does not have to. The capture
can equally well be the bound itself and extends would mean identity instead of inheritance.

If the bound is a wildcard parameterized type, then extends refers to the subtype relationship that exists among wildcard parameterized types and concrete
parameterized types.

Example (extends in the definition of a wildcard bound):

Triple<? extends Collection<?>> q = new Triple<List<? extends Number>>();

In this example the wildcard capture cannot be a type that inherits from the bound, because wildcard parameterized types such as Collection<?> cannot be
inherited from. Instead the wildcard capture must be a member of the type family denoted by Collection<?>, such as Collection<String>, List<Number>,

List<?> or List<? extends Number>. Again, extends does not mean inheritance; it means member of the type family denoted by the wildcard parameterized type.

LINK TO THIS Technicalities.FAQ209

REFERENCES How do parameterized types fit into the Java type system?
Which super-subset relationships exist among wildcards?
What is the capture of a wildcard?

Exception Handling

Can I use generic or parameterized types in exception handling?

No. Exception and error types must not be generic.

It is illegal to define generic types that are directly or indirectly derived from class Throwable. Consequently, no instantiations of generic type appear anywhere in
exception handling.

LINK TO THIS Technicalities.FAQ301

REFERENCES Why are generic exception and error types illegal?

Why are generic exception and error types illegal?

Because the virtual machine cannot distinguish between different instantiations of a generic exception type.

A generic class must not directly or indirectly be derived from class Throwable, which means that generic exception or error types are not allowed. Imagine if they
were allowed ...

Example (of illegal generic exception type):

class IllegalArgumentException<T> extends Exception { // illegal
 private T info;
 public IllegalArgumentException(T arg) { info = arg; }
 public T getInfo() { return info; }
}

We might then want to catch instantiations of this (illegal) generic exception type.

Example (of illegal use of illegal parameterized exception type):

void method_1() {
 try { method_2(); }
 catch (IllegalArgumentException<String> e) { ... } // illegal
 catch (IllegalArgumentException<Long> e) { ... } // illegal
 catch (Throwable e) { ... }
}

Taking into account that generic Java source code is translated to Java byte code by type erasure, it should be clear that the method's catch clauses do not make any
sense. Both parameterized exception types have the same runtime type and the mechanism for catching exceptions is a runtime mechanism performed by the virtual
machine based on the non-exact runtime types. The JVM has no chance to distinguish between different instantiations of the same generic (exception) type. For
this reason, generic exception and error types are pointless in Java and banned from the language. (Note that generic exception and error types are not pointless per
se, but in the context of Java generics with type erasure their are nonsensical.)

Other problems occur when we define methods that throw instantiations of an (illegal) generic exception type.

Example (of illegal use of illegal parameterized exception type):

void method_1()
 throws IllegalArgumentException<String>, IllegalArgumentException<Long> { // illegal
 ... do something ...
 throw new IllegalArgumentException<String>("argument missing");
 ... do something else ...
 throw new IllegalArgumentException<Long>(timeout);
}

Again, after type erasure, both parameterized exception types have the same runtime type and the method's throws clause is nonsensical. The method could at best
throw the raw type, which means that it must not create and throw any instantiations of the (illegal) generic type either. Another reason to disallow generic
exception and error types.

LINK TO THIS Technicalities.FAQ302

REFERENCES What is type erasure?

Can I use a type parameter in exception handling?

It depends.

 Type parameters can appear in throws clauses, but not in catch clauses.

LINK TO THIS Technicalities.FAQ303

REFERENCES Can I use a type parameter in a catch clause?
Can I use a type parameter in in a throws clause?

Can I throw an object whose type is a type parameter?

Can I use a type parameter in a catch clause?

No.

Using a type parameter in a catch clause is nonsensical because of the translation by type erasure.

Example (before type erasure):

<E extends Exception> void someMethod() {
 try { … do something that might raise an exception …
 } catch (E e) { … do something special for this particular exception type …
 } catch (IllegalStateException e) { … handle illegal state …
 } catch (Exception e) { … handle all remaining exceptions …
 }
}

Example (after type erasure):

void someMethod() {
 try { … do something that might raise an exception …
 } catch (Exception e) { … do something special for this particular exception type …
 } catch (IllegalStateException e) { … handle illegal state …
 } catch (Exception e) { … handle all remaining exceptions …
 }
}

After type erasure the catch clause would boil down to a catch clause using the type parameter's bound. This is because type parameters do not have a runtime
type representation of themselves. Type parameters are replaced by their leftmost bound in the course of translation by type erasure. In our example the catch
clause for the unknown exception type E is translated by type erasure to a catch clause for type Exception, which is the bound of the type parameter E. This
catch clause for type Exception precedes further catch clauses for other exception types, and renders them pointless.

In other words, there never is a catch clause for the particular unknown exception type that the type argument stands for. Instead of catching a particular exception
type we end up catching the bound of the unknown exception type, which changes the meaning of the sequence of catch clauses substantially and is almost always
undesired. For this reason, the use of type parameters in catch clauses is illegal.

LINK TO THIS Technicalities.FAQ304

REFERENCES Can I use a type parameter in in a throws clause?
Can I throw an object whose type is a type parameter?

Can I use a type parameter in in a throws clause?

Yes.

Using a type paramter in a throws clause is permitted.

Example (before type erasure):

public interface Action<E extends Exception> {
 void run() throws E;
}
public final class Executor {
 public static <E extends Exception>
 void execute(Action<E> action) throws E {
 …
 action.run();
 …
 }
}
public final class Test {
 private static class TestAction implements Action<java.io.FileNotFoundException> {
 public void run() throws java.io.FileNotFoundException {
 …
 throw new java.io.FileNotFoundException();
 …
 }
 public static void main(String[] args) {
 try {
 Executor.execute(new TestAction());
 } catch (java.io.FileNotFoundException f) { … }
 }
}

In this example we see a generic interface Action whose type parameter E is the exception type that its run method throws. This is perfectly reasonable, because
throws clauses are a compile-time feature and the lack of a runtime type representation of the type parameter is not needed. At runtime, a particular exception type
will have replaced the type parameter E, so that we would throw and catch an object of a concrete exception type. In our example we instantiate the Action
interface using the FileNotFound exception type as a type argument, so that a FileNotFound exception is raised and caught.

Even after type erasure the code snippet above still captures the intent.

Example (after type erasure):

public interface Action {
 void run() throws Exception;
}
public final class Executor {
 public static void execute(Action action) throws Exception {
 …

 action.run();
 …
 }
}
public final class Test {
 private static class TestAction implements Action {
 public void run() throws java.io.FileNotFoundException {
 …
 throw new java.io.FileNotFoundException();
 …
 }
 public static void main(String[] args) {
 try {
 Executor.execute(new TestAction());
 } catch (java.io.FileNotFoundException f) { … }
 }
}

LINK TO THIS Technicalities.FAQ305

REFERENCES Can I use a type parameter in a catch clause?
Can I throw an object whose type is a type parameter?

Can I throw an object whose type is a type parameter?

In principle, yes, but in practice, not really.

We can declare methods that throw an exception (or error) of unknown type.

Example (of method with type parameter in throws clause):

interface Task<E extends Exception> {
 void run() throws E;
}

Can such a method throw an object of the unknown exception (or error) type? The method has in principle 3 ways of raising such an exception (or error):

create a new exception (or error) and throw it
catch the exception (or error) of an invoked operation and re-throw it
propagate the exception (or error) of an invoked operation

As we must not create objects of an unknown type the first possibility is not an option. Since type parameters must not appear in catch clauses, we cannot catch

and therefore not re-throw an exception of an unknown type. At best, we can propagate an exception of unknown type that is raised by any of the invoked
operations.

Example (throwing an object of unknown type):

final class CleanUp<E extends Exception, T extends Task<E>> {
 public void cleanup(T task) throws E {
 task.run();
 }
}
final class DisconnectTask implements Task<IllegalAccessException> {
 public void run() throws IllegalAccessException {
 ...
 throw new IllegalAccessException();
 ...
 }
}
class Test {
 public static void main(String[] args) {
 CleanUp<IllegalAccessException,DisconnectTask> cleaner
 = new CleanUp<IllegalAccessException,DisconnectTask>();
 try { cleaner.cleanup(new DisconnectTask()); }
 catch (IllegalAccessException e) { e.printStackTrace(); }
 }
}

LINK TO THIS Technicalities.FAQ306

REFERENCES Can I create an object whose type is a type parameter?
Can I use a type parameter in a catch clause?
Can I use a type parameter in in a throws clause?

Static Context

How do I refer to static members of a parameterized type?

Using the raw type as the scope qualifier, instead of the any instantiation of the generic type.

If you refer to a static member of a generic type, the static member name must be preceded by the name of the enclosing scope, such as
EnclosingType.StaticMember. In case of a generic enclosing type the question is: which instantiation of the generic type can or must be used as the scope
qualifier?

The rule is that no instantiation can be used. The scope is qualified using the raw type. This is because there is only one instance of a static member per type.

Example (of a generic type with static members):

public final class Counted<T> {
 public static final int MAX = 1024;
 public static class BeyondThresholdException extends Exception {}

 private static int count;
 public static int getCount() { return count; }

 private final T value;
 public Counted(T arg) throws BeyondThresholdException {
 value = arg;
 count++;
 if (count >= 1024) throw new BeyondThresholdException();
 }
 public void finalize() { count--; }
 public T getValue() { return value; }
}

int m = Counted.MAX; // ok
int k = Counted<Long>.MAX; // error
int n = Counted<?>.MAX; // error

try {
 Counted<?>[] array = null;
 array[0] = new Counted<Long>(10L);
 array[1] = new Counted<String>("abc");
}
catch (Counted.BeyondThresholdException e) {
 e.printStackTrace();
}
System.out.println(Counted.getCount()); // ok
System.out.println(Counted<Long>.getCount()); // error
System.out.println(Counted<?>.getCount()); // error

In the example above, the generic class Counted has a static member MAX and there is only one unique Counted.MAX, regardless of the number of objects of type
Counted and regardless of the number of instantiations of the generic type Counted that may be used somewhere in the program. Referring to MAX as
Counted<String>.MAX, Counted<Long>.MAX, Counted<?>.MAX, etc. would be misleading, because it suggests that there were several manifestations of the MAX

member, which is not true. There is only one Counted.MAX, and it must be referred to using the raw type Counted as the scope qualifier. The same is true for other
static members such as static methods and static nested types. The example illustrates that we must refer to the static method as Counted.getCount and to the static
nested exception class as Counted.BeyondThresholdException.

In sum, it is illegal to refer to a static member using an instantiation of the generic enclosing type. This is true for all categories of static members, including static
fields, static methods, and static nested types, because each of these members exists only once per type.

LINK TO THIS Technicalities.FAQ351

REFERENCES Is there one instances of a static field per instantiation of a generic type?
Why can't I use a type parameter in any static context of the generic class?
How do I refer to an interface type nested into a generic type?
How do I refer to an enum type nested into a generic type?
How do I refer to a (non-static) inner class of a generic type?
Can I import a particular instantiation of generic type?

How do I refer to a (non-static) inner class of a generic type?

Using an instantiation of the enclosing generic type as the scope qualifier, instead of the raw type.

Static nested types are referred to using the raw form of the enclosing generic type as the scope qualifier. This is different for inner classes.

Like a static nested type, an inner class exists only once, in the sense that there is only one .class file that represents the inner class. Different from a static nested
type, an inner class depends on the type argument of its outer class type. This is because each object of an inner class type has a hidden reference to an object of
the outer class type. The type of this hidden reference is an instantiation of the generic enclosing type. As a result, the inner class type is not independent of the
enclosing class's type arguments.

Example (of an inner class nested into a generic outer class):

 class Sequence<E> {
 private E[] theSequence;
 private int idx;

 // static classes
 public static class NoMoreElementsException extends Exception {}
 public static class NoElementsException extends Exception {}

 // (non-static) inner class
 public class Iterator {
 boolean hasNext() {
 return (theSequence != null && idx < theSequence.length);
 }
 E getNext() throws NoElementsException,
 NoMoreElementsException,
 java.lang.IllegalStateException {

 if (theSequence == null)
 throw new NoElementsException();
 if (idx < 0)
 throw new java.lang.IllegalStateException();
 if (idx >= theSequence.length)
 throw new NoMoreElementsException();
 else
 return theSequence[idx++];
 }
 }
 public Iterator getIterator() {
 return this.new Iterator();
 }
}

class Test {
 private static <T> void print(Sequence<T> seq)
 throws Sequence.NoElementsException,
 Sequence.NoMoreElementsException {
 Sequence<T>.Iterator iter = seq.new Iterator();
 while (iter.hasNext())
 System.out.println(iter.getNext());
 }
 public static void main(String[] args) {
 try {
 Sequence<String> seq1 = new Sequence<String>();
 ... fill the sequence ...
 print(seq1);
 Sequence<Long> seq2 = new Sequence<Long>();
 ... fill the sequence ...
 print(seq2);
 } catch (Exception e) { e.printStackTrace();
 }
 }
}

In the example above, the inner class Iterator depends on the outer class's type parameter E: the type parameter E is the return type of the iterator's getNext
method and the inner class access the outer class's array of elements of type E. For this reason, the iterator type is referred to as Sequence<T>.Iterator (using an
instantiation), instead of just Sequence.Iterator (using the raw type). This does not imply, that a scope qualification using the raw type is illegal; it is permitted
and it means that the outer object being referred to by the inner object is of the raw type instead of a more specific type.

In contrast, the nested exception types are static classes and do not depend on the outer class's type parameter. (Static nested types never depend on their enclosing
type's type parameters, because the type parameters must not appear in any static context of a generic class. Details are explained in a separate FAQ entry.) Static
nested classes must be referred to using the raw type as the scope qualifier, that is, as Sequence.NoElementsException; use of an instantiation as the scope, such
as Sequence<T>.NoElementsException, is illegal.

LINK TO THIS Technicalities.FAQ352

REFERENCES How do I refer to static members of a generic type?
Why can't I use a type parameter in any static context of the generic class?

How do I refer to an interface type nested into a generic type?

Using the raw type as the scope qualifier, instead of the any instantiation of the generic type.

Nested interfaces are implicitly static. This is sometimes confusing because the interface looks like it were a non-static member of its enclosing class, while in fact
it is static. As a static member of a generic type it must be referred to using the raw form of the enclosing type as the scope qualifier. Using an instantiation as the
scope qualifier is illegal and rejected by the compiler.

Example (of a nested interface):

class Controller<E extends Executor> {
 private E executor;
 public Controller(E e) { executor = e; }
 ...
 public interface Command { void doIt(Runnable task); }

 public Command command() {
 return new Command() {
 public void doIt(Runnable task) { executor.execute(task); }
 };
 }
}
class Test
 public static void test(Controller<ThreadPoolExecutor> c) {
 Controller<ExecutorService> controller
 = new Controller<ExecutorService>(Executors.newCachedThreadPool());
 Controller.Command command = controller.command();
 ...
 }
}

The Command interface is nested into the generic Controller class. The compiler does not allow that we refer to the nested interface using any instantiation of the
enclosing generic class as the scope qualifier. Instead of saying Controller<ExecutorService>.Command we must say Controller.Command.

Below is another example of a nested interface taken from the java.util package. The generic Map interface has a nested Entry interface.

Example (of a nested interface taken from package java.util):

public interface Map<K,V> {
 public interface Entry<K,V> {

 public K getKey();
 public V getValue();
 ...
 }
 public Set<Map.Entry<K, V>> entrySet();
 ...
}

The source code above is an excerpt from the JDK source code. Note that the nested interface Entry is generic itself and has its own type parameters, which are
independent of the outer interface's type parameters. The fact that the type parameters of inner and outer interface have the same names, namely K and V, is perhaps
confusing, but perfectly legal. The inner interface's type parameters K and V are visible only inside the inner interface and have nothing to do with the outer
interface's type parameters K and V.

When the inner interface Entry is used it must be referred to using the raw type Map as the scope qualifier, that is, as Map.Entry<String,Long> for instance. A
qualification such as Map<String,Long>.Entry<String,Long> is illegal.

LINK TO THIS Technicalities.FAQ353

REFERENCES Why can't I use a type parameter in any static context of the generic class?
How do I refer to static members of a parameterized type?
Can I import a particular instantiation of parameterized type?

How do I refer to an enum type nested into a generic type?

Using the raw type as the scope qualifier, instead of the any instantiation of the generic type.

Nested enum types are implicitly static. This is sometimes confusing because the enum type looks like it were a non-static member of its enclosing class, while in
fact it is static. As a static member of a generic type it must be referred to using the raw form of the enclosing type as the scope qualifier. Using an instantiation as
the scope qualifier is illegal and rejected by the compiler.

Example (of a nested enum type):

class Controller<E extends Executor> {
 private State state;
 ...
 public enum State { VALID, INVALID; }
 public State getState() { return state; }
}
class Test
 public static void test(Controller<ThreadPoolExecutor> c) {
 Controller<ExecutorService> controller
 = new Controller<ExecutorService>(Executors.newCachedThreadPool());
 Controller.State state = controller.getState();
 switch (state)) {

 case INVALID: ... ;
 case VALID: ... ;
 }
 ...
 }
}

The enum type State is nested into the generic Controller class. The compiler does not allow that we refer to the nested interface using any instantiation of the
enclosing generic class as the scope qualifier. Instead of saying Controller<ExecutorService>.State we must say Controller.State. The same applies to the
enum constants; they are referred to as Controller.State.VALID and Controller.State.INVALID.

LINK TO THIS Technicalities.FAQ354

REFERENCES How do I refer to static members of a paramterized type?
Can I import a particular parameterized type?

Can I import a particular parameterized type?

No.

In an import statement we must not use parameterized types; only raw types are permitted. This applies to regular and static import statements.

Example (of a generic type with static members):

package com.sap.util;

public final class Counted<T> {
 public static final int MAX = 1024;
 public static class BeyondThresholdException extends Exception {}

 private static int count;
 public static int getCount() { return count; }

 private final T value;
 public Counted(T arg) throws BeyondThresholdException {
 value = arg;
 count++;
 if (count >= 1024) throw new BeyondThresholdException();
 }
 public void finalize() { count--; }
 public T getValue() { return value; }
}

import com.sap.util.*; // ok

import com.sap.util.Counted; // ok
import com.sap.util.Counted<String>; // error

import static com.sap.Counted.*; // ok
import static com.sap.Counted<String>.*; // error
import static cam.sap.Counted.BeyondThresholdException; // ok
import static com.sap.Counted<String>.BeyondThresholdException; // error

LINK TO THIS Technicalities.FAQ355

REFERENCES How do I refer to static members of a parameterized type?

Why are generic enum types illegal?

Because they do not make sense in Java.

An enum type is similar to a class type of which only a limited number of instances, namely the enum values, exist. The enum values are static fields of the enum
type. The key question is: of which type would the static enum values be if the enum type were allowed to be parameterized?

Example (of an illegal generic enum type):

public enum Tag<T> { // illegal, but assume we could do this
 good, bad;

 private T attribute;
 public void setAttribute(T arg) { attribute = arg; }
 public T getAttribute() { return attribute; }
}

This enum type would be translated to a class that roughly looks like this:

public class Tag<T> extends Enum<Tag<T>> {
 public static final Tag<???> good;
 public static final Tag<???> bad;
 private static final Tag $VALUES[];
 private T attribute;

 private Tag(String s, int i) { super(s, i); }

 static {
 good = new Tag("good", 0);
 bad = new Tag("bad" , 1);
 $VALUES = (new Tag[] { good, bad });
 }

 public void setAttribute(T arg) { attribute = arg; }

 public T getAttribute() { return attribute; }
}

The static enum values cannot be of type Tag<T> because type parameters such a T must not appear in any static context. Should they be of the raw type Tag then?
In this case the private attribute field would be of type Object, the invocation of the setAttribute method would be flagged an "unchecked call" and the
getAttribute method would only return Object. The entire parameterization would be pointless then.

On the other hand, if we wanted that the type of the enum values is a particular instantiation of the generic enum type, how would we tell the compiler? There is no
syntax for specifying the type of an enum value.

Also, when we refer to the enum values we must qualify their name by the name of their defining class, that is, Tag.good and Tag.bad. Although Tag is a
parameterized type, we cannot say Tag<String>.good or Tag<Long>.bad. This is because static members of a generic type must be referred to via the raw type
name. In other words, we would not even be capable of expressing that we intend to refer to an enum value belonging to a particular instantiation of the generic
enum type.

No matter how we put it: generic enum types do not make sense.

LINK TO THIS Technicalities.FAQ356

REFERENCES Why can't I use a type parameter in any static context of the generic class?
How do I refer to static members of a parameterized type?

Type Argument Inference

What is type argument inference?

The automatic deduction of the type arguments at compile time.

Type inference happens when the compiler can deduce the type arguments of a generic type or method from context information. In this case the type arguments
need not be explicitly specified.

There are two situations in which type inference is attempted:

when an object of a generic type is created, and
when a generic method is invoked.

Example (of automatic type inference on instance creation):

class ArrayList<E> {
 ...
}
List<String> list1 = new ArrayList<String>(); // type parameter specified => E:=String
List<String> list2 = new ArrayList<>(); // type parameter inferred => E:=String
List<String> list3 = new ArrayList(); // type parameter omitted => using raw type

Class ArrayList<E> is a generic class. Usually you must specify the type parameter whenever you use the generic type (unless you want to use the raw type). In an
instance creation expression you can omit the type parameter and replace it by empty angle brackets. When the compiler sees the empty angle brackets in the new-
expression it takes a look at the lefthand side of the assignment in which the new-expression appears. From the static type of the lefthand side variable the compiler
infers the type parameter of the generic type of the newly created object. In the example above the compiler concludes that the type variable E must be replaced by
the type String. If you neither specify the type parameter no use the empty angle brackets you refer to the raw type.

[Note: Type inference for new-expressions was introduced in Java 7 and did not exist in Java 5 and 6.]

Example (of automatic type inference on method invocation):

class Collections {
 ...
 public static <T> void copy(List<? super T> dest, List<? extends T> src) { ... }
 ...
}

List<String> src = new ArrayList<>();
List<Object> dst = new ArrayList<>();

Collections.<CharSequence>copy(dst,src); // type parameter specified => T:=CharSequence
Collections.<>copy(dst,src); // error: illegal syntax
Collections.copy(dst,src); // type parameter inferred => T:=String

The copy() method is a generic method. When the generic method is invoked without explicit specification of the type argument then the compiler takes a look at
the arguments that are provided for the method call. From their static types the compiler infers the type parameter of the generic copy() method. In the example
above the compiler concludes that the type variable T must be replaced by the type String. Different from type inference in conjunction with new-expressions
empty angle bracket are not permitted; the brackets must be omitted entirely.

LINK TO THIS Technicalities.FAQ400

REFERENCES What is type argument inference for generic methods?
What is type argument inference for instance creation expressions?
What is the diamond operator?
Is there a correspondence between type inference for method invocation and type inference for instance creation?

Is there a correspondence between type inference for method invocation and type inference for instance creation?

Yes, the instance creation expression for a generic type is treated like invocation of a generic creator method.

The rules for type inference for method invocation and type inference for instance creationare the same. Consider a generic class with a constructor:

class SomeClass<T> {
 SomeClass(T arg) { ... }
}

The creation of an object of this type can involve type inference, e.g. in this example:

SomeClass<Long> ref = new SomeClass<>(0L);

The type inference for the instance creation is performed in the same way as for a static creator method. If the class had the following creator method:

class SomeClass<T> {
 SomeClass(T arg) { ... }
 static <E> SomeClass<E> make(E arg) { return new SomeClass<E>(arg); }
}

then the type inference for the invocation of the creator method would yield the same result as type inference for the instance creation. That is, the following leads
to equivalent type inference:

SomeClass<Long> ref = new SomeClass<>(0L);
SomeClass<Long> ref = SomeClass.make(0L);

LINK TO THIS Technicalities.FAQ400A

REFERENCES What is type argument inference for instance creation expressions?
What is type argument inference for generic methods?

What is the "diamond" operator?

It denotes the empty angle brackets that are used for type inference in new-expression.

Since Java 7 the compiler can infer the type parameters of a parameterized type in a new-expression. In order to trigger the type inference the so-called diamond
operator is used. Below is an example.

Example (of diamond operator):

List<String> list1 = new ArrayList<String>();
List<String> list2 = new ArrayList<>();

The empty angle brackets <> are called the diamond operator. The diamond operator is not really an operator in the sense of the syntax specification of the Java
programming language. Rather it is just an empty type parameter specification. The empty brackets are needed in order to distinguish between the raw type
ArrayList and the incomplete type ArrayList<>.

LINK TO THIS Technicalities.FAQ400B

REFERENCES What is type argument inference for instance creation expressions?
Why does the type inference for an instance creation expression fail?

What is type argument inference for instance creation expressions?

The automatic deduction of the type arguments in a new-expression.

When an object of a parameterized type is created using a new-expression (also called an instance creation expression) then the compiler can infer part of the type
information of the object to be created. More specifically, the compiler can deduce the type parameters of the parameterized type if it is incomplete. In order to
trigger the automatic type inference the so-called diamond operator is used (see Technicalities.FAQ400A). [Note: Type inference for new-expressions is available since
Java 7.]

Type inference takes into account the context in which the new-expression appears and what the new-expression looks like. The type inference process works in two
separate steps:

First, the compiler takes a look at the static types of the constructor arguments in the new-expression.
Second, if any of the missing type parameters cannot be resolved from the constructor arguments, then the compiler uses information from the context in
which the new-expression appears.

In Java 7, the only permitted inference context is an assignment context. If the new-expression is the right-hand side of an assignment, then the compiler deduces
the missing type parameter information from the lefthand side of the assignment, if possible.

Since Java 8, an additional inference context is permitted, namely the method invocation context. If the new-expression is the argument to a method invocation,
then the compiler deduces the missing type parameter information from the method's declared argument type, if possible.

Examples (of type inference for an instance creation expression without constructor arguments):

List<String> list1 = new ArrayList<String>();
List<String> list2 = new ArrayList<>(); // type inference

Map<Callable<String>, List<Future<String>>> tasks1
= new HashMap<Callable<String>, List<Future<String>>>();
Map<Callable<String>, List<Future<String>>> tasks2
= new HashMap<>(); // type inference

In the examples above no constructor arguments are specified. As a result, the compiler cannot deduce any type information from the constructor arguments.
Instead it takes a look at the static type of the expression on the lefthand side of the assignment and infers the missing type parameters from there.

Examples (of improved type inference in Java 8):

List<String> list1 = new ArrayList<>(); // fine since Java 7
List<String> list2 = Collections.synchronizedList(new ArrayList<>()); // error in Java 7; fine in Java 8

error: incompatible types

 List<String> list3 = Collections.synchronizedList(new ArrayList<>());
 ^
 required: List<String>
 found: List<Object>

In both examples type inference is needed, because no constructor arguments are specified. The first new-expression appears in an assignment context and the
compiler infers the missing type parameter String from the left-hand side of the assignment. The second new-expression appears in a method invocation context.
Before Java 8, this yields a compile-time error. Since Java 8, the compiler infers the missing type parameter String from the declared type of the argument of the
synchronizedList method. (Actually, it is a little more complicated. The synchronizedList method is a generic method and the compiler must first infer the
generic method's type parameter before it knows the method's declared argument type. The generic synchronizedList method appears in an assignement context,
from which the compiler deduces that the type parameter for synchronizedList must be String. Its declared argument type then is List<String> and from this
information the compiler infers that the new ArrayList must be an ArrayList<String>.)

The inference is different if constructor arguments are provided. In such a context the compiler takes a look at the static types of the constructor arguments and
ignores the lefthand side of the assignment.

Examples (of type inference for an instance creation expression with constructor arguments):

Set<Long> s1 = new HashSet<>();
Set<Long> s2 = new HashSet<>(Arrays.asList(0L,0L));
Set<Number> s3 = new HashSet<>(Arrays.asList(0L,0L)); // error in Java 7; fine in Java 8
Set<Number> s4 = new HashSet<Number>(Arrays.asList(0L,0L));

error: incompatible types
 Set<Number> s3 = new HashSet<>(Arrays.asList(0L,0L));
 ^
 required: Set<Number>
 found: HashSet<Long>

- The first new-expression does not have constructor arguments; the missing type parameter is inferred from the lefthand side of the assignment. The lefthand side is
of type Set<Long> and compiler concludes that the missing type parameter must be Long.

- The second new-expression has constructor arguments; the missing type parameter is inferred from the constructor argument. The constructor argument is of type
List<Long> and the compiler again concludes that the missing type parameter must be Long. Note, the lefthand side of the assignment is ignored because the
constructor argument provides enough information for the type inference to complete successfully.

- The third new-expression demonstrates that the lefthand side of the assignment is indeed ignored (in Java 7). The compiler again infers from the constructors
argument, i.e., the result of the asList method, that the missing type parameter for the new HashSet must be Long. This leads to a type mismatch and an according
error message. The compiler does not conclude that the missing type parameter should be Number because it ignores the lefthand side of the assignment. In Java 8,
the type inference was modified and improved. Since then, compiler infers Number as the type parameter form the new HashSet on the right-hand side of the
compiler and from that deduces Number as the type parameter for the asList method. In Java 8, this compiles just fine.

- The fourth new-expression does not rely on type inference and simply specifies the intended type parameter explicitly.

There is yet a different result of type inference if the context of the new-expression has neither constructor arguments nor a lefthand side of an assignment. Here is
an example.

Examples (of type inference for an instance creation expression in a method invocation context):

void method(Set<Long> arg) { ... }

method(new HashSet<>()); // error in Java 7; fine in Java 8
method(new HashSet<>(Arrays.asList(0L,1L,2L)));

error: method method in class TypeInference cannot be applied to given types
 method(new HashSet<>());
 ^
 required: Set<Long>
 found: HashSet<Object>

The new-expressions appears as the argument of a method invocation. In the first invocation there is neither a constructor argument nor a lefthand side of an
assignment. For lack of more specific information the compiler in Java 7 concludes that the missing type parameter must be Object. This leads to a type mismatch
and an according error message. This changed with Java 8. The method invocation context is now a permitted type inference context. The compiler concludes
from the declared argument type of method that the new HashSet must be a HashSet<Long>.
The second invocation is fine because the compiler can infer the missing type parameter from the constructor argument.

LINK TO THIS Technicalities.FAQ400C

REFERENCES What is the diamond operator?
Why does the type inference for an instance creation expression fail?

Why does the type inference for an instance creation expression fail?

Usually because there is not enough context information.

Occasionally, the type inference for instance creation expressions yields results that are surprising at first sight and might lead to unexpected compile-time errors.
Here is an example.

The result of type inference can be surprising for a new-expression that appears in a context other than an assignment.

Example (of surprising type inference):

String s = new ArrayList<>().iterator().next(); // error

error: incompatible types: Object cannot be converted to String
 String s = new ArrayList<>().iterator().next();

 ^

In the example above an error message is issued because the new-expression new ArrayList<>() does not have constructor arguments and it neither appears on the
right-hand side of an assignment nor as the argument of a method invocation. Instead, it appears in a chain of method calls. Such a chain is not a valid type
inference context.

Hence the compiler has no information for type inference and concludes that the missing type parameter of the ArrayList is type Object. The iterator's next
method then returns an Object instead of the expected String and the compiler accordingly reports a type mismatch.

Note: Type inference generally fails for anonymous inner classes.

Here is an example:

Callable<Long> task = new Callable <> () { // error
 public Long call() { return 0L; }
};

error: Callable<Long> task = new Callable <> () {
 ^
 reason: cannot use '<>' with anonymous inner classes

LINK TO THIS Technicalities.FAQ400D

REFERENCES What is type argument inference for generic methods?
What is type argument inference for instance creation expressions?
Is there a correspondence between type inference for method invocation and type inference for instance creation?
Why do temporary variables matter in case of invocation of generic methods?

What is type argument inference for generic methods?

The automatic deduction of the type arguments of a generic method at compile time.

A generic method can be invoked in two ways:

Explicit type argument specification. The type arguments are explicitly specified in a type argument list.
Automatic type argument inference. The method is invoked like regular non-generic methods, that is, without specification of the type arguments. In this case
the compiler automatically infers the type arguments from the invocation context.

Example (of automatic type inference):

class Collections {
 public static <A extends Comparable<? super A>> A max (Collection<A> xs) {
 Iterator<A> xi = xs.iterator();
 A w = xi.next();
 while (xi.hasNext()) {
 A x = xi.next();
 if (w.compareTo(x) < 0) w = x;
 }
 return w;
 }
}
final class Test {
 public static void main (String[] args) {
 LinkedList<Long> list = new LinkedList<Long>();
 list.add(0L);
 list.add(1L);
 Long y = Collections.max(list);
 }
}

In this example, the max method is invoked like a regular method and the compiler automatically infers the type argument from the type of the method argument. In
our example the compiler finds that the formal method parameter is Collection<A> and that the actual method argument is of type LinkedList<Long>. From this
information the compiler concludes that A must be replaced by Long, which yields an applicable max method with the signature Long max(Collection<Long>).

LINK TO THIS Technicalities.FAQ401

REFERENCES What is a parameterized or generic method?
What is explicit type argument specification?
What happens if a type parameter does not appear in the method parameter list?
Why doesn't type argument inference fail when I provide inconsistent method arguments?

What is explicit type argument specification?

Providing a type argument list when the method is invoked.

A generic method can be invoked with or without an explicit type argument specification. If you do not want to rely on the compiler's automatic type argument
inference process you can specify the type arguments explicitly.

Example (of a generic method and its invocation):

public class Utilities {
 public static <T extends Comparable> T max(T arg1, T arg2) {
 return (arg1.compareTo(arg2)>0)?arg1:arg2;
 }

}
public class Test {
 public static void main(String[] args) {
 System.out.println(Utilities.<String>max("abc","xyz"));
 }
}

The max method can be invoked as Utilities.<String>max("abc","xyz"), where the type argument is explicitly provided, or as Utilities.max("abc","xyz"),
in which case the compiler automatically infers the type argument.

The syntax for explicit type argument specification requires that the type argument list is precedes the method name, like in Utilities.<String>max. Note the
difference to parameterized types, where the type argument list follows the type name, like in List<String>.

There is a little syntax quirk in the explicit type argument specification: it is required that the type argument(s) is preceded by either a type (for a static method like
the one in the example), or the object on which the method is invoked (for a non-static method), or super (in case that a superclass's method is invoked). This is
even required when methods are invoked in the scope of the same class. In the scope of the class we usually omit the type or object on which the method is
invoked; we simply say method() rather than this.method(). This shorthand is not permitted when a type argument list precedes the method name. We must not
say <String>method(), instead we must say this.<String>method().

Example:

class SomeClass {
 private static <T> void parameterizedClassMethod() { ... }
 private static void regularClassMethod() { ... }
 private <T> void parameterizedInstanceMethod() { ... }
 private void regularInstanceMethod() { ... }

 public void anotherMethod() {
 ...
 regularClassMethod(); // fine
 SomeClass.regularClassMethod(); // fine
 regularInstanceMethod(); // fine
 this.regularInstanceMethod(); // fine

 <String>parameterizedClassMethod(); // error
 SomeClass.<String>parameterizedClassMethod(); // fine
 <String>parameterizedMethod(); // error
 this.<String>parameterizedMethod(); // fine
 ...
 }
}

LINK TO THIS Technicalities.FAQ402

REFERENCES What is a parameterized or generic method?
How do I invoke a generic method?

What is type argument inference?
Can I use a wildcard as the explicit type argument of a generic method?

Can I use a wildcard as the explicit type argument of a generic method?

No, wildcards are not permitted as explicit type arguments of a generic method.

When a generic method is invoked, then we usually rely on the compiler to infer the type argument of the generic method. In rare cases, we specify the type
argument explicitly. Here is an example where explicit type argument specification would make sense.

Example (of generic methods):

class Factory {
 private static Class< ? > type;

 public static <T> void setComponentType(Class< ? extends T> token) {
 type = token;
 }
 public static <T> List<T> make(int size) {
 Object array = Array.newInstance(type, size);
 return Arrays.asList((T[])array); // warning: unchecked cast
 }
}

This class hat two factory methods that create a list which is backed by an array. Such a list has a fixed size and is type-safe in the sense that it rejects elements of
an undesired type, just like an array would reject elements of a type that is not compatible to the array's component type.

Example (of using the factory methods):

public static void main(String[] args) {
 Factory.setComponentType(String.class);

 List<String> stringList;
 stringList = Factory.make(10);
 stringList.set(0,"Hello");
 stringList.set(1,new Date()); // expected error: illegal argument type

 List<Date> objectList;
 dateList = Factory.make(10); // compiles although it should not !!!
 dateList.set(1,new Date()); // run-time error: ArrayStoreException
}

The factory is configured (using the setComponentType() method) to create lists that are backed by an array of strings. When we invoke a factory method then the
compiler performs type inference and tries to figure out what the best type argument for invocation of the generic make() method would be. Since the type
parameter does not appear in the method's arguments list the compiler infers the type argument from the context in which the return value is used.

As long as we assign the result of invoking the make() method to a reference of type List<String>, all is fine. The compiler infers T:=String when the make()
method is invoked. We can place strings into the list, but no other type of object, because the reference of type List<String> will not permit it.

If we try assigning the result of invoking the make() method to a reference of type List<Date>, it will compile as well. The compiler will again infer the type
argument from the usage of the return value; this time it infers T:=Date. However, when we attempt placing a date into the list, which is backed by a string array
internally, an ArrayStoreException will be raised. Basically, what we created is a list that will always raise ArrayStoreExceptions. This undesired situation is a
side effect of the "unchecked cast" warning in the implementation of the make() method.

In order to prevent the undesired situation, the make() method is best invoked with an explicitly specified type argument.

Example (of explicit type argument specification):

public static void main(String[] args) {
 Factory.setComponentType(String.class);

 List<String> stringList;
 stringList = Factory.<String>make(10);
 stringList.set(0,"Hello");

 List<Date> objectList;
 dateList = Factory.<String>make(10); // does no longer compile
 dateList.set(1,new Date()); // run-time error: ArrayStoreException
}

Basically, the example shows a situation in which explicit type argument specification serves a purpose and is helpful.

In the example we have been using a concrete type when we specified the type argument explicitly, which raises the question: can we also use wildcards as explicit
type arguments? The answer is: No, wildcards are not permitted as explicit type arguments of parameterized method.

Example (of a wildcard as explicitly specified type arguments of generic methods):

List<? super String> list1 = Factory.make(10); // fine
List<? super String> list2 = Factory.<String>make(10); // fine
List<? super String> list3 = Factory.<? super String>make(10); // error

The Java syntax simply does not allow wildcards in the location where explicit type arguments appear and you might see funny compiler message ranging from
"wildcard is not allowed in this location" to less helpful statements such as "illegal start of type", "illegal start of expression", "(expected", "; expected" or the like.

LINK TO THIS Technicalities.FAQ402A

REFERENCES What is type argument inference?
What is explicit type argument specification?
What happens if a type parameter does not appear in the method parameter list?

What happens if a type parameter does not appear in the method parameter list?

The compiler tries to infer the type argument from the calling context.

If the type parameter does not appear in the types of the method arguments, then the compiler cannot infer the type arguments by examining the types of the actual
method arguments. If the type parameter appears in the method's return type, then the compiler takes a look at the context in which the return value is used. If the
method call appears as the righthand side operand of an assignment, then the compiler tries to infer the method's type arguments from the static type of the lefthand
side operand of the assignment.

Example (for inference from assignment context):

public final class Utilities {
 ...
 public static <T> HashSet<T> create(int size) {
 return new HashSet<T>(size);
 }
}
public final class Test
 public static void main(String[] args) {
 HashSet<Integer> hi = Utilities.create(10);
 }
}

The create method is generic and the type parameter T does not appear in the method parameter list; it appears in the method's return type HashSet<T> though.
The result of the method is assigned to a variable of type HashSet<Integer> so that the compiler infers that the type argument of the create method must be
T:=Integer. The compiler is even smart enough to infer the type argument of the create method if the method result is assigned to a variable of a supertype of
HashSet<Integer>, such as Collection<Integer>.

The invocation of a generic method might appear as the argument of another method invocation. Such an invocation context was not considered for type inference
before Java 8. This changed with the improved type inference in Java 8.

In Java 5, 6, and 7, the compiler does not try to perform any special type inference when the invocation of a generic method appears in a method invocation
context. Instead the compiler handles the method call as though it would appear in no context. No context means that the compiler performs the type inference
algorithm as though the method result was assigned to a variable of type Object.

Example (for inference from a method invocation context):

public final class Utilities {
 ...
 public static <T> HashSet<T> create(int size) {
 return new HashSet<T>(size);
 }
 public static void print(HashSet<String> h) {
 for (String s : h) System.out.println(s);
 }
}
public final class Test
 public static void main(String[] args) {

 Utilities.print(Utilities.create(10)); // error in Java 5,6,7; fine in Java 8
 }
}

error: print(java.util.HashSet<java.lang.String>) cannot be applied to (java.util.HashSet<java.lang.Object>)
 Utilities.print(Utilities.create(10));
 ^

In Java 5, 6, and 7, the compiler treats the call Utilities.print(Utilities.create(10)) like it were an assignment Object o = Utilities.create(10)). A
lefthand side of type Object does not provide any particular type information so that the compiler cannot really infer anything. If no specific type can be inferred
then the compiler chooses Object as the type argument. With type Object as the type argument the create method returns a HashSet<Object>, which is
incompatible to a HashSet<String> and leads to the error message displayed above.
In Java 8, the compiler considers that the print method needs an argument of type HashSet<String> and figures out that the type parameter for the create method
must be String then.

The key difference is that previously the method invocation context was treated like no context for type inference and in Java 8 it a valid type inference context,
from which the compiler retrieves information for the type deduction process.

If the type argument inference does not lead to the desired result or if we want to disable the automatic inference, we can explicitly specify the type arguments.

Example (for explicit type argument specification):

public final class Utilities {
 ...
 public static <T> HashSet<T> create(int size) {
 return new HashSet<T>(size);
 }
 public static void print(HashSet<String> h) {
 for (String s : h) System.out.println(s);
 }
}
public final class Test
 public static void main(String[] args) {
 Utilities.print(Utilities.<String>create(10));
 }
}

LINK TO THIS Technicalities.FAQ403

REFERENCES What is a parameterized or generic method?
What is type argument inference?
What is explicit type argument specification?
Why doesn't type argument inference fail when I provide inconsistent method arguments?
Why do temporary variables matter in case of invocation of generic methods?

Why doesn't type argument inference fail when I provide inconsistent method arguments?

Because the "inconsistent" arguments might make sense to the compiler.

Occasionally the compiler infers a type where we might expect that no type can be inferred.

Example (of surprising type argument inference):

public final class Utilities {
 ...
 public static <T> void fill(T[] array, T elem) {
 for (int i=0; i<array.length; ++i) { array[i] = elem; }
 }
}

public final class Test {
 public static void main(String[] args) {
 Utilities.fill(new String[5], new String("XYZ")); // T:=String
 Utilities.fill(new String[5], new Integer(100)); // T:=Object&Serializable&Comparable
 }
}

This is the example of a method whose type argument appears in several method arguments. Quite obviously the intent is that the component type of the array
should match the type of the second argument. For this reason we might expect that a method invocation such as Utilities.fill(new String[5], new
Integer(100)) would fail, because the argument types String[] and Integer are inconsistent.

However, the compiler does not reject this method call. Instead it performs type inference and infers the common supertypes of String and Integer as type
argument. To be precise the compiler infers

T := Object & Serializable & Comparable<? extends Object&Serializable&Comparable<?>>

which is a synthetic type construct used internally by the compiler. It denotes the set of supertypes of String and Integer.

Whether the result of this successful type inference is desired or not depends on the circumstances. In this example the source code compiles, but the method
invocation in question will fail at runtime with an ArrayStoreException, because the method would try to store integers in an array of strings.

In Java 5, 6, and 7 it was possible to prevent the perhaps undesired type argument inference by a minor modification of the fill method.

Example (modified, in Java 5, 6, and 7):

public final class Utilities {
 ...
 public static <T, S extends T> void fill(T[] array, S elem) {
 for (int i=0; i<array.length; ++i) { array[i] = elem; }
 }
}

public final class Test {
 public static void main(String[] args) {
 Utilities.fill(new String[5], new String("XYZ")); // T:=String and S:=String
 Utilities.fill(new String[5], new Integer(100)); // T:=String and S:=Integer => error (in Java 5,6,7)
 }
}

In Java 5, 6, and 7 the compiler inferred both type arguments separately as String and Integer. When it checked the bounds it found that S is not within bounds
because Integer is not a subtype of String and the call was rejected.

Since Java 8 the compiler does no longer issue an error message and you will observe the same behavior as in the initial example without the additional type variable
"S extends T". The fact that the type inference process in Java 5, 6, and 7 could not find a common super type and issued an error message was just an accident.
The glitch was fixed in Java 8 and nowadays the compiler exploits the covariance of arrays in this example, too.

Example (same as above, but in Java 8):

public final class Utilities {
 ...
 public static <T, S extends T> void fill(T[] array, S elem) {
 for (int i=0; i<array.length; ++i) { array[i] = elem; }
 }
}

public final class Test {
 public static void main(String[] args) {
 Utilities.fill(new String[5], new String("XYZ")); // T:=Object&Serializable&Comparable and S:=String => fine
 Utilities.fill(new String[5], new Integer(100)); // T:=Object&Serializable&Comparable and S:=Integer => fine (in Java 8)

 }
}

LINK TO THIS Technicalities.FAQ404

REFERENCES What is a parameterized or generic method?
What is type argument inference?
What is explicit type argument specification?
What happens if a type parameter does not appear in the method parameter list?
Why do temporary variables matter in case of invocation of generic methods?

Why do temporary variables matter in case of invocation of generic methods?

Because of the automatic type argument inference.

Usually, it does not make a difference whether we use the result of a method call for invocation of the next method, like in

f(x).g();

or whether we store the result first in a temporary variable and then pass the temporary variable to the next method, like in

tmp=f(x);
tmp.g();

The effect is usually the same. However, when the methods are generic methods, it may well make a difference.

Example:

public final class Utilities {
 ...
 public static <T> HashSet<T> create(int size) {
 return new HashSet<T>(size);
 }
}

Let us consider a chained method call where the result of the create method is used for calling the iterator method. We can perform the chained method call in
two steps using a temporary variable:

HashSet<Integer> tmp = Utilities.create(5);
Iterator<Integer> iter = tmp.iterator();

Or we can perform it one step:

Iterator<Integer> iter = Utilities.create(5).iterator();

If the methods were non-generic methods the result of both invocation techniques would be the same. Not so in our example, where the first method is generic and
the compiler must infer the type parameter from the context. Obviously, the context is different in a chained call compared to the use of temporaries.

In the two-step invocation the result of the create method appears in an assignment, and assignment is a context that the compiler considers for type inference. In
the one-step invocation the result of the create method is used to invoke another method, and method chains are not considered for type inference.

Here is what the compiler infers for the two-step call:

HashSet<Integer> tmp = Utilities.create(5); // T:=Integer
Iterator<Integer> iter = tmp.iterator(); // T:=Integer

For inference of the type argument of the create method the compiler takes a look at the type of the left-hand side of the assignement, namely the type of the
temporary variable. It is of type HashSet<Integer> and the compiler infers T:=Integer.

The one-step call, in contrast, does not compile because the type argument inference works differently in this case:

Iterator<Integer> iter = Utilities.create(5).iterator();

error: incompatible types
 Iterator<Integer> iter = Utilities.create(5).iterator();
 ^
 required: Iterator<Integer>
 found: Iterator<Object>

For inference of the type argument of the create method the compiler does not consider any context information, because it neither appears in an assignment nor a
method invocation context, but in a method chain instead. It treats the invocation of create as though the result of create were assigned to a variable of type
Object, which does not provide any type information to deduce anything from. For this reason the compiler infers T:=Object, which yields an instantiation of the
create method with the signature HashSet<Object> create().
Equipped with this information the compiler finds that the iterator method return an Iterator<Object>, which leads to the error message.

The example demonstrates, that in rare cases there can be a difference between a one-step nested method call such as f(x).g(); and a two-step call using a
temporary variable such as tmp=f(x); tmp.g();. The difference stems from the fact that an assignment context is considered for the type argument inference,
while other situations are not.

LINK TO THIS Technicalities.FAQ405

REFERENCES What is a parameterized or generic)method?
What is type argument inference?
What is explicit type argument specification?
What happens if a type parameter does not appear in the method parameter list?
Why doesn't type argument inference fail when I provide inconsistent method arguments?

Wildcard Capture

What is the capture of a wildcard?

An anonymous type variable that represents the particular unknown type that the wildcard stands for. The compiler uses the capture internally for evaluation
of expressions and the term "capture of ?" occasionally shows up in error message.

A wildcard is compatible with all types from a set of types. For instance, all instantiations of the generic type List, such as List<String>, List<Number>,
List<Long>, etc. can be assigned to a reference variable of type List<?>. Wildcards are typically used as argument or return types in method signatures. The goal
and effect is that the method accepts arguments of a larger set of types, namely all types that belong to the type family that the wildcard denotes.

Example (of a wildcard in a method signature):

public static void reverse(List<?> list) {

 // ... the implementation ...
}

The reverse method accepts arguments that are of a type that is an instantiation of the generic type List. In order to use the type argument list of type List<?>
the compiler converts the wildcard instantiation to the so-called capture of the wildcard. The capture represents the particular albeit unknown type of the argument
that is actually passed the method. This particular unknown type is, of course, a member of the type family that the wildcard denotes.

The wildcard capture can be imagined as an anonymous type variable that the compiler generates internally and uses as the static type of the method parameter. A
type variable is like a type parameter of a generic type or method; it stands for a particular unknown type. Changing the method parameter's type from the
instantiation using a wildcard to an instantiation using the capture is known as capture conversion. The translation of our method can be imagined as though the
compiler had re-implemented the method to use a synthetic generic method that has the wildcard capture as it type parameter.

Example (pseudo code showing the wildcard capture):

private static <T_?001> void reverse_?001(List<T_?001> list) {
 // ... the implementation ...
}
public static void reverse(List<?> list) {
 reverse_?001(list);
}

For the analysis and translation of the implementation of the reverse method the compiler will use List<T_?001> as the type of the method parameter. The
synthetic type variable T_?001 is used for all purposes where the method parameter's static type information is needed, like for instance, in type checks and for type
inference.

For illustration, let us consider a conceivable implementation of the reverse method using a generic helper method rev for which the compiler must infer the type
arguments from the wildcard.

Example (implementation of the reverse method):

private static <T> void rev(List<T> list) {
 ListIterator<T> fwd = list.listIterator();
 ListIterator<T> rev = list.listIterator(list.size());
 for (int i = 0, mid = list.size() >> 1; i < mid; i++) {
 T tmp = fwd.next();
 fwd.set(rev.previous());
 rev.set(tmp);
 }
}
public static void reverse(List<?> list) {
 rev(list);
}

The compiler applies capture conversion and generates an anonymous type variable. In principle, the compiler translates the reverse method to something like this.

Example (pseudo code showing the wildcard capture):

private static <T> void rev(List<T> list) {
 ListIterator<T> fwd = list.listIterator();
 ListIterator<T> rev = list.listIterator(list.size());
 for (int i = 0, mid = list.size() >> 1; i < mid; i++) {
 T tmp = fwd.next();
 fwd.set(rev.previous());
 rev.set(tmp);
 }
}
private static <T_?001> void reverse_?001(List<T_?001> list) {
 rev(list);
}
public static void reverse(List<?> list) {
 reverse_?001(list);
}

Among other things, the compiler uses the wildcard capture T_?001 for inference of the type argument T of the generic helper method rev. It infers T:=T_?001 and
therefore invokes the instantiation <T_?001>rev of method rev.

LINK TO THIS Technicalities.FAQ501

REFERENCES What is a wildcard capture assignment-compatible to?

What is the capture of an unbounded wildcard compatible to?

Nothing, except the unbounded wildcard itself.

The capture of a wildcard is compatible to a corresponding wildcard, never to a concrete type.

Example (implementation of assignment of wildcard instantiation):

private static void method(List<?> list) {
 List<String> ll1 = list; // error
 List<? extends String> ll2 = list; // error
 List<? super String> ll3 = list; // error
 List<?> ll4 = list; // fine
}

error: incompatible types
found : java.util.List<capture of ?>
required: java.util.List<java.lang.String>
 List<String> ll1 = list;
 ^
error: incompatible types
found : java.util.List<capture of ?
required: java.util.List<? extends java.lang.String>

 List<? extends String> ll2 = list;
 ^
error: incompatible types
found : java.util.List<capture of ?
required: java.util.List<? super java.lang.String>
 List<? super String> ll3 = list;
 ^

The method takes an argument of type List<?>, which the compiler translates to type List<capture of ?>. The wildcard capture denotes a particular unknown
type. From the static type information "capture of ?" the compiler cannot tell, whether capture stands for String; the capture could stand for any type. On this
ground the compiler rejects the assignment of the method result of type List<capture of ?> to the variable of type List<String> in the example.

LINK TO THIS Technicalities.FAQ502

REFERENCES What is the capture of a wildcard?
What does type-safety mean?

Is the capture of a bounded wildcard compatible to the bound?

No, not even if the bound is a final class.

The capture of a wildcard is compatible to a corresponding wildcard, never to a concrete type. Correspondingly, the capture of a bounded wildcard is compatible
solely to other wildcards, but never to the bound.

For illustration we use the getClass method, which is defined in class Object (see java.lang.Object.getClass). The result of the getClass method is of type
Class<? extends X>, where X is the erasure of the static type of the expression on which getClass is called.

Example (with bounded wildcard):

Number n = new Integer(5);
Class<Number> c = n.getClass(); // error

error: incompatible types
found : java.lang.Class<capture of ? extends java.lang.Number>
required: java.lang.Class<java.lang.Number>
 Class<Number> c = n.getClass();
 ^

In our example the static type of the expression on which getClass is called is Number. Hence the return value is of type Class<capture of ? extends Number>.
A variable of type Class<capture of ? extends Number> can refer to a Class<Number>, a Class<Long>, a Class<Integer>, etc. There's no guarantee that is
actually refers to a Class<Number>, and indeed, in our example it refers to a Class<Integer>. The compiler rightly complains. How do we fix it?

Example (corrected):

Number n = new Integer(5);

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#getClass%28%29

Class<?> c1 = n.getClass();
Class<? extends Number> c2 = n.getClass();

Since getClass returns a wildcard instantiation we must assign the result to a wildcard instantiation. Class<?> would be correct, but also the more specific type
Class<? extends Number>would work.

Interestingly, the capture of a bounded wildcard, whose upper bound is a final class, is still incompatible to the bounds type, although the set of types that the
bounded wildcard denotes contains only one type, namely the bounds type itself.

Example (using final class as bound):

String s = new String("abc");
Class<String> c0 = s.getClass(); // error
Class<?> c1 = s.getClass(); // fine
Class<? extends String> c2 = s.getClass(); // fine

error: incompatible types
found : java.lang.Class<capture of ? extends java.lang.String>
required: java.lang.Class<java.lang.String>
 Class<String> c0 = s.getClass();
 ^

LINK TO THIS Technicalities.FAQ503

REFERENCES What is the capture of a wildcard?
What is a wildcard capture assignment-compatible to?

Wildcard Instantiations

Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?

It depends on the kind of wildcard.

Using an object through a reference variable of a wildcard parameterized type is restricted. Consider the following class:

Example (of a parameterized class):

class Box<T> {
 private T t;
 public Box(T t) { this.t = t; }
 public void put(T t) { this.t = t;}
 public T take() { return t; }
 public boolean equalTo(Box<T> other) { return this.t.equals(other.t); }
 public Box<T> copy() { return new Box<T>(t); }
}

In a wildcard parameterized type such as Box<?> the type of the field and the argument and the return types of the methods would be unknown. It is like the field t
would be of type "?" and the put method would take an argument of type "?" and so on. In this situation the compiler does not let us assign anything to the field or
pass anything to the put method. The reason is that the compiler cannot make sure that the object that we are trying to assign to the field or pass as an argument to a
method is of the expected type, since the expected type is unknown. Similar effects can be observed for methods such as like equalTo and clone, which have a
parameterized argument or return type and the type parameter T appears as type argument of the parameterized argument or return type.

Below is a table that lists which uses of fields and methods are legal or illegal. It assumes a class like this:

class X<T> {
 private T t;

 public T m() { ... }
 public void m(T arg) { ... }

 public Y<T> f() { ... }
 public void f(Y<T> arg) { ... }

 public Y<? extends T> f() { ... }
 public void f(Y<? extends T> arg) { ... }

 public Y<? super T> f() { ... }
 public void f(Y<? super T> arg) { ... }
}

Examples and further explanations can be found in subsequent FAQ entries.

X<?> unbounded wildcard

legal illegal

fields x = t We can read a field whose type is the type
parameter.
The field is accessible through a reference of type
Object.

t = x We cannot assign to a field
whose type is the type
parameter
except: null

methods Tm() We can call methods that use the type parameter
as the return type.
The returned value is accessible through a
reference of type Object.

void m(T) We cannot call methods that use
the type parameter as an
argument type.
except: null

Y<T> f()
Y<? extends T> f()
Y<? super T> f()

We can call methods that use the type parameter
as type argument in the return type or as an upper
or lower wildcard bound in the return type.
The returned value is accessible through the
unbounded wildcard instantiation of the return
type (i.e. Y<?>).

void f(Y<T>)
void f(Y<? extends T>)

We cannot call methods that use
the type parameter as type
argument in an argument type or
as an upper wildcard bound in
an argument type.
except: null

void f(Y<? super T>) We can call methods that use the type parameter
as a lower wildcard bound in an argument type.
The method argument must be either null or of
type Y<Object> (the argument type instantiated
for type Object).

X<? extends B> wildcard with upper bound

legal illegal

fields x = t We can read a field whose type is the type
parameter.
The field is accessible through a a reference
whose type is the upper bound.

t= x We cannot assign to a field
whose type is the type
parameter.
except: null

methods T m() We can call methods that use the type parameter
as the return type.
The returned value is accessible through a
reference whose type is the upper bound.

void m(T) We cannot call methods that use
the type parameter as an
argument type.
except: null

Y<T> f()
Y<? extends T> f()

We can call methods that use the type parameter
as type argument in the return type or as an upper
wildcard bound in the return type.
The returned value is accessible through the upper
bound wildcard instantiation of the return type
(i.e. Y<? extends B>).

void f(Y<T>)
void f(Y<? extends T>)

We cannot call methods that use
the type parameter as type
argument in an argument type or
as an upper wildcard bound in
an argument type.
except: null

Y<? super T> f() We can call methods that use the type parameter
as an lower wildcard bound in the return type.
The returned value is accessible through the
unbounded wildcard instantiation of the return
type (i.e. Y<?>).

void f(Y<? super T>) We cannot call methods that use the type
parameter as an lower wildcard bound in an
argument type.
The method argument must be either null or of a
type that belongs to the family denoted by Y<?
super B>.

X<? super B> wildcard with lower bound

legal illegal

fields t = x We can assign to a field whose type is the type
parameter.
The value to be assigend must be either null or
of a type that is the lower bound or a subtype
thereof.

x = t We can read a field whose type is the type
parameter.
The field is accessible through a reference of type
Object.

methods void m(T) We can call methods that use the type parameter
as an argument type.
The method argument must be either null or of a
type B (the lower bound).

T m() We can call methods that use the type parameter
as the return type.
The returned value is accessible through a
reference of type Object.

Y<T> f()
Y<? super T> f()

We can call methods that use the type parameter
as type argument in the return type or as a lower
wildcard bound in the return type.
The returned value is accessible through the lower
bound wildcard instantiation of the return type
(i.e. Y<? super B>).

void f(Y<T>) We cannot call methods that use
the type parameter as type
argument in an argument type.
except: null

Y<? extends T> f() We can call methods that use the type parameter
as an upper wildcard bound in the return type.
The returned value is accessible through the
unbounded wildcard instantiation of the return
type (i.e. Y<?>).

void f(Y<? extends T>) We can call methods that use the type parameter
as an upper wildcard bound in an argument type.
The method argument must be either null or of a
type that belong to the family denoted by Y<?
extends B>.

void f(Y<? super T>) We can call methods that use the type parameter
as a lower wildcard bound in an argument type.
The method argument must be either null or of
type Y<Object> (the argument type instantiated
for type Object).

LINK TO THIS Technicalities.FAQ601

REFERENCES What is a wildcard instantiation?
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
In a wildcard parameterized type, can I read and write fields whose type is the type parameter?

Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?

We cannot call methods through an unbounded wildcard parameterized type that take arguments of the "unknown" type. But we can call methods that return
objects of the "unknown" type.

Example:

class Box<T> {
 private T t;

 public Box(T t) { this.t = t; }
 public void put(T t) { this.t = t;}
 public T take() { return t; }

 public boolean contains(T t) { return this.t == t; }
 public String toString() { return "Box["+t.toString()+"]"; }
}
class Test {
 public static void main(String[] args) {
 Box<?> box = new Box<String>("abc");

 box.put("xyz"); // error
 box.put(null); // ok

 box.contains("abc"); // error
 box.toString(); // ok

 String s = box.take(); // error
 Object o = box.take(); // ok
 }
}

We cannot call the put method of the Box type through a reference variable of type Box<?>, because the method takes an argument of the unknown type that the
wildcard stands for. From the type information Box<?> the compiler does not know whether the object we are passing to the method is compatible with the actual

object contained in the box. If the Box<?> would be refering to a Box<Long>, then it would clearly violate the type guarantees if we could put a string into the box
that is supposed to contain a long value. The only argument that is accepted it the null reference, because it has no type.

The same reasoning applies to all methods that take an argument of the "unknown" type, even if the method does not even modify the box, like the contains
method. It just takes an object of the "unknown" type and compares it. If a string is passed to the contains method of a box that contains a long value, it simply
returns false. No harm is done. Yet the invocation is illegal if performed through a reference variable of type Box<?>. [Defining the contains method as taking
an argument of type Object, instead of T, would avoid this effect. In this case the contains method would not take an object of "unknown", but an object of "any"
type, and it would be permitted to invoke it through a reference variable of type Box<?>.]

We can freely invoke any methods that neither take nor return objects of the "unknown" type.

The example demonstrates that methods returning an object of the unknown type can be called and return an object of unknown type, which can be assigned to a
reference variable of type Object, but to not to a reference variable of a more specific type.

LINK TO THIS Technicalities.FAQ602

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
In a wildcard instantiation, can I read and write fields whose type is the type parameter?
What is a wildcard instantiation?
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?

Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?

We cannot call methods through an unbounded wildcard parameterized type that take arguments of the "unknown" type. But we can call methods that return
objects of the "unknown" type.

The rules for an upper bound wildcard parameterized type are the same as for an unbounded wildcard parameterized type. The only difference that a returned object
of "unknown" type is known to be compatible to the upper bound.

Example:

class Box<T> {
 private T t;

 public Box(T t) { this.t = t; }
 public void put(T t) { this.t = t;}
 public T take() { return t; }

 public boolean contains(T t) { return this.t == t; }
 public String toString() { return "Box["+t.toString()+"]"; }
}
class Test {
 public static void main(String[] args) {
 Box<? extends Number> box = new Box<Long>(0L);

 box.put(1L); // error
 box.put(null); // ok

 box.contains(0L); // error
 box.toString(); // ok

 Long l = box.take(); // error
 Number n = box.take(); // ok
 }
}

The returned object of "unknown" type is known to be compatible to the upper bound. Hence we can assign the result of take to a reference variable of type
Number in our example.

LINK TO THIS Technicalities.FAQ603

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
In a wildcard instantiation, can I read and write fields whose type is the type parameter?
What is a wildcard instantiation?
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?

Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?

We can call methods through an unbounded wildcard parameterized type that take arguments of the "unknown" type. But we cannot call methods that return
objects of the "unknown" type.

Compared to the rules for upper bound wildcard parameterized types the rules for wildcard parameterized types with a lower bound wildcard are the other way
round.

We can call methods through an unbounded wildcard parameterized type that take arguments of the "unknown" type. But we cannot call methods that return
objects of the "unknown" type.

Example:

class Box<T> {
 private T t;

 public Box(T t) { this.t = t; }
 public void put(T t) { this.t = t;}
 public T take() { return t; }

 public boolean contains(T t) { return this.t == t; }
 public String toString() { return "Box["+t.toString()+"]"; }
}
class Test {
 public static void main(String[] args) {
 Box<? super Long> box = new Box<Number>(0L);
 Number number = new Integer(1);

 box.put(1L); // ok
 box.put(null); // ok
 box.put(number); // error

 box.contains(0L); // ok
 box.toString(); // ok

 Long l = box.take(); // error
 Number n = box.take(); // error
 Object o = box.take(); // ok
 }
}

Methods that take an argument of the "unknown" type can be invoked with either null or an argument whose type is the lower bound or a subtype thereof. That is,
we can pass a Long to method take through the reference of type Box<? super Long>. But we cannot pass a Number as an argument, because the compiler does
not know whether the Box<? super Long> refers to a Box<Number>or perhaps to a Box<Comparable<Long>>, in which case a Number were inacceptable, because it
is not comparable.

Methods that return a value of the "unknown" type can be invoked, but only if no assumptions are made regarding the type of the returned object and it is treated
like an Object.

LINK TO THIS Technicalities.FAQ604

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized type?

Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
In a wildcard instantiation, can I read and write fields whose type is the type parameter?
What is a wildcard instantiation?
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?

Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard
parameterized type?

We cannot call methods that use the type parameter as type argument in an argument type. We can call methods that use the type parameter as type argument
in the return type; the returned value is accessible through a wildcard instantiation of the return type.

In a wildcard parameterized type, we cannot call methods that use the type parameter as type argument in an argument type in an argument type. But, we can call
methods that use the type parameter as type argument in the return type; the returned value is accessible through a wildcard instantiation of the return type. The
wildcard instantiation of the return type corresponds to the wildcards instantiation that was used for the method invocation, e.g. a method of Box<? extends
Number> would return a ReturnType<? extends Number> and a a method of Box<? super Number> would return a ReturnType<? super Number> .

Unbounded wildcard parameterized type.

Example (access through unbounded wildcard):

class Box<T> {
 private T t;
 ...
 public boolean equalTo(Box<T> other) { return this.t.equals(other.t); }
 public Box<T> copy() { return new Box<T>(t); }
}
class Test {
 public static void main(String[] args) {
 Box<String> stringBox = new Box<String>("abc");
 Box<?> unknownBox = stringBox;

 boolean equal = true;
 equal = unknownBox.equalTo(unknownBox); // error
 equal = unknownBox.equalTo(stringBox); // error

 Box<?> box1 = unknownBox.copy(); // ok
 Box<String> box2 = unknownBox.copy(); // error
 }
}

error: equalTo(Box<capture of ?>) in Box<capture of ?> cannot be applied to (Box<capture of ?>)
 equal = unknownBox.equalTo(unknownBox);
 ^
error: equalTo(Box<capture of ?>) in Box<capture of ?> cannot be applied to (Box<java.lang.String>)
 equal = unknownBox.equalTo(stringBox);
 ^
error: incompatible types
found : Box<capture of ?>
required: Box<java.lang.String>
 Box<String> box2 = unknownBox.copy();
 ^

We cannot call the equalTo method of the Box type through a reference variable of type Box<?>, because the compiler does not know which type of object is
expected as an argument of the equalTo method. In our example the reference variable unknownBox refers to a Box<String> and hence only a Box<String> would
be acceptable as an argument of the equalTo method. But from the type information Box<?> the compiler does not know which type of box would be acceptable as
an argument. For this reason the compiler rejects all attempts to invoke the equalTo method.

Invocation of the copy method is permitted. It returns an object of an unknown instantiation of the Box type to which we can refer through a variable of type Box<?
>. More specific information about the instantiation of the Box type is not available and for this reason the assigment to a reference variable of an instantiation
different from Box<?> fails.

In the example, the parameterized argument and return type happens to be the enclosing type. This is just by chance. The rules explained above apply in the same
way to unrelated parameterized argument and return types. For instance, if the Box class had methods taking or returning a Comparable<T> the same rules would
apply: methods that take arguments of type Comparable<T> cannot be called and methods that return a Comparable<T> can be called and the result can be
assigned to a Comparable<?>.

A note on the error messages and the term "capture of":
The compiler uses the term "capture of ?" when it refers to the unknown type that the wildcard stands for. More on the wildcard capture can be found in
Technicalities.FAQ501. The compiler uses the capture of a wildcard in order to denote the signatures of methods in wildcard instantiations.
The signature of a method in a wildcard parameterized type is determined by replacing all occurrences of the type parameter by the capture of the parameterized
type's wildcard. For instance, the method equalTo(Box<T>) in Box<?> has the signature equalTo(Box<capture of ?>). The same method in Box<? extends
Number> has the signature equalTo(Box<capture of ? extends Number>). The method takeContentFrom(Box<? extends T>) in Box<?> has the signature
takeContentFrom(Box<? extends capture of ?>) and the same method in Box<? super Number> has the signature takeContentFrom(Box<? extends
capture of ? super Number>).
What these "capture of capture" things mean is explained below in the discussion of various examples. Just to give you an idea, the term "? extends capture of
?" refers to a subtype ("? extends ...") of an unknown type ("capture of ?") , and the term "? extends capture of ? super Number" refers to subtype ("?
extends ...") of an unknown type ("capture of ? ...") that is a supertype of Number ("? super Number") .

Bounded wildcard parameterized types.

The example above used a reference variable of the unbounded wildcard type Box<?>. If we use a bounded wildcard type such as Box<? extends Number> or
Box<? super Number> the same rules apply.

Example (access through bounded wilcdard):

class Box<T> {
 private T t;
 ...
 public boolean equalTo(Box<T> other) { return this.t.equals(other.t); }
 public Box<T> copy() { return new Box<T>(t); }
}
class Test {
 public static void main(String[] args) {
 Box<Number> numberBox = new Box<Number>(0L);
 Box<? extends Number> unknownBox = numberBox;

 boolean equal = true;
 equal = unknownBox.equalTo(unknownBox); // error
 equal = unknownBox.equalTo(numberBox); // error

 Box<?> box1 = unknownBox.copy(); // ok
 Box<? extends Number> box2 = unknownBox.copy(); // ok
 Box<Number> box3 = unknownBox.copy(); // error
 }
}

error: equalTo(Box<capture of ? extends java.lang.Number>)
in Box<capture of ? extends java.lang.Number>
cannot be applied to (Box<capture of ? extends java.lang.Number>)
 equal = unknownBox.equalTo(unknownBox);
 ^
error: equalTo(Box<capture of ? extends java.lang.Number>)
in Box<capture of ? extends java.lang.Number>
cannot be applied to (Box<java.lang.Number>)
 equal = unknownBox.equalTo(numberBox);
 ^
error: incompatible types
found : Box<capture of ? extends java.lang.Number>
required: Box<java.lang.Number>
 Box<Number> box3 = unknownBox.copy();
 ^

The equalTo method cannot be called through a reference variable of type Box<? extends Number> because the argument type is still an unknown type. Thanks
to the upper bound the compiler knows that the expected argument type must be an instantiation of Box for a type argument that is a subtype of Number, but the
compiler still does not know which instantiation exactly. Hence, the compiler cannot make sure that the right type of argument is provided for the method
invocation and rejects the method invocation. The effect is exactly the same as for Box<?>, and likewise for Box<? super Number>.

The copy method can be called and the in this case the result can be assigned to a reference variable of the more specific type Box<? extends Number>, instead of
just Box<?>. When invoked on a Box<? super Number> the result would be assignable to a Box<? super Number>.

LINK TO THIS Technicalities.FAQ605

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
In a wildcard instantiation, can I read and write fields whose type is the type parameter?
What is a wildcard instantiation?
What is a wildcard?
What is the capture of a wildcard?

Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard
parameterized type?

We cannot call methods that use the type parameter as an upper wildcard bound in an argument type, with an exception for access through a lower bound
wildcard parameterized type. We can call methods that use the type parameter as the upper wildcard bound in the return type; the returned value is accessible
through the unbounded wildcard instantiation of the return type.

In an upper bound wildcard parameterized type, we cannot call methods that use the type parameter as an upper wildcard bound in an argument type. This holds for
access through unbounded and upper bound wildcard parameterized types. Access through a lower bound wildcard parameterized type is possible for certain
argument types.

We can call methods that use the type parameter as the upper wildcard bound in the return type; the returned value is accessible through the unbounded wildcard
instantiation of the return type. This holds for access through unbounded and lower bound wildcard parameterized types. Access through an upper bound wildcard
parameterized type yields a more specific return type, namely a return type that corresponds to the upper bound wildcard instantiation that was used for the method
invocation, e.g. a method of Box<? extends Number> would return a ReturnType<? extends Number>.

Unbounded wildcard parameterized type.

Example (access through unbounded wildcard):

class Box<T> {
 private T t;
 ...
 public void takeContentFrom(Box<? extends T> box) { t = box.t; }
 public Class<? extends T> getContentType() { ... }
}
class Test {
 public static void main(String[] args) {
 Box<Number> numberBox = new Box<Number>(5L);
 Box<?> unknownBox = numberBox;

 unknownBox.takeContentFrom(numberBox); // error
 unknownBox.takeContentFrom(unknownBox); // error

 Class<Number> type0 = unknownBox.getContentType(); // error
 Class<? extends Number> type1 = unknownBox.getContentType(); // error
 Class<?> type2 = unknownBox.getContentType(); // ok
 }
}

error: takeContentFrom(Box<? extends capture of ?>) in Box<capture of ?>
cannot be applied to (Box<java.lang.Number>)
 unknownBox.takeContentFrom(numberBox);
 ^
error: takeContentFrom(Box<? extends capture of ?>) in Box<capture of ?>
cannot be applied to (Box<capture of ?>)
 unknownBox.takeContentFrom(unknownBox);
 ^
error: incompatible types
found : java.lang.Class<capture of ? extends capture of ?>
required: java.lang.Class<java.lang.Number>
 Class<Number> type0 = unknownBox.getContentType();
 ^
error: incompatible types
found : java.lang.Class<capture of ? extends capture of ?>
required: java.lang.Class<? extends java.lang.Number>
 Class<? extends Number> type1 = unknownBox.getContentType();
 ^

We cannot call the takeContentFrom through a reference variable of type Box<?>, because the compiler does not know which type of object is expected as an
argument of the takeContentFrom method. From the error message you can tell what the compiler find, namely a method with the signature
takeContentFrom(Box<? extends capture of ?>). The term Box<? extends capture of ?> stands for an instantiation of Box with a type argument of an
unknown type that is a subtype of another unknown type. In essence, the argument type is unknown and the compiler has no chance to perform any type checks to
make sure the correct type of argument is passed to the method call. And hence the invocation is illegal.

Invocation of the getContentType method is permitted. The return value is of a type that is an unknown instantiation of the Class type to which we can refer
through a variable of type Class<?>. More specific information about the instantiation of the Class type is not available and for this reason the assigment to
instantiations such as Class<? extends Number> as Class<Number> fails.

Upper bound wildcard parameterized type.

Let us see what the situation is like when we use a bounded wildcard parameterized type instead of the unbounded one.

Example (access through upper bound wildcard):

class Box<T> {
 private T t;
 ...
 public void takeContentFrom(Box<? extends T> box) { t = box.t; }
 public Class<? extends T> getContentType() { ... }
}
class Test {
 public static void main(String[] args) {
 Box<Number> numberBox = new Box<Number>(5L);
 Box<? extends Number> unknownBox = numberBox;

 unknownBox.takeContentFrom(numberBox); // error
 unknownBox.takeContentFrom(unknownBox); // error

 Class<Number> type0 = unknownBox.getContentType(); // error
 Class<? extends Number> type1 = unknownBox.getContentType(); // ok
 }
}

error: takeContentFrom(Box<? extends capture of ? extends java.lang.Number>)
in Box<capture of ? extends java.lang.Number>
cannot be applied to (Box<java.lang.Number>)
 unknownBox.takeContentFrom(numberBox);
 ^
error: takeContentFrom(Box<? extends capture of ? extends java.lang.Number>)
in Box<capture of ? extends java.lang.Number>
cannot be applied to (Box<capture of ? extends java.lang.Number>)
 unknownBox.takeContentFrom(unknownBox);
 ^
error: incompatible types
found : java.lang.Class<capture of ? extends capture of ? extends java.lang.Number>
required: java.lang.Class<java.lang.Number>
 Class<Number> type1 = unknownBox.getContentType();
 ^

In an upper bound wildcard parameterized type such as Box<? extends Number> the behavior is the same as in an unbounded wildcard parameterized type. The
invocation of takeFromContent is rejected because the argument type in unknown. The argument type is Box<? extends capture of ? extends Number> which
is an instantiation of Box for an unknown subtype of an unknown subtype of Number.

Invocation of the getContentType method is permitted. The return type is more specific than for the unbounded wildcard case; we can refer to the result through a
variable of type Class<? extends Number>. This is because the return type is Class<capture of ? extends capture of ? extends Number>, which is an
unknown subtype of an unknown subtype of Number, that is, a subtype of Number.

Lower bound wildcard parameterized type.

Last but no least, the invocation through a lower bound wildcard.

Example (access through lower bound wildcard):

class Box<T> {
 private T t;
 ...
 public void takeContentFrom(Box<? extends T> box) { t = box.t; }
 public Class<? extends T> getContentType() { ... }
}
class Test {
 public static void main(String[] args) {
 Box<Long> longBox = new Box<Long>(0L);
 Box<Number> numberBox = new Box<Number>(0L);
 Box<Object> objectBox = new Box<Object>(5L);
 Box<? extends Number> unknownNumberBox = numberBox;
 Box<? super Number> unknownBox = numberBox;

 unknownBox.takeContentFrom(longBox); // ok
 unknownBox.takeContentFrom(numberBox); // ok
 unknownBox.takeContentFrom(objectBox); // error
 unknownBox.takeContentFrom(unknownNumberBox); // ok
 unknownBox.takeContentFrom(unknownBox); // error

 Class<Number> type1 = unknownBox.getContentType(); // error
 Class<? extends Number> type2 = unknownBox.getContentType(); // error
 Class<? super Number> type3 = unknownBox.getContentType(); // error
 Class<?> type4 = unknownBox.getContentType(); // ok
 }
}

error: takeContentFrom(Box<? extends capture of ? super java.lang.Number>)
in Box<capture of ? super java.lang.Number>
cannot be applied to (Box<java.lang.Object>)
 unknownBox.takeContentFrom(objectBox);
 ^
error: takeContentFrom(Box<? extends capture of ? super java.lang.Number>)
in Box<capture of ? super java.lang.Number>
cannot be applied to (Box<capture of ? super java.lang.Number>)
 unknownBox.takeContentFrom(unknownBox);
 ^
error: incompatible types
found : java.lang.Class<capture of ? extends capture of ? super java.lang.Number>
required: java.lang.Class<java.lang.Number>
 Class<Number> type1 = unknownBox.getContentType();

 ^
error: incompatible types
found : java.lang.Class<capture of ? extends capture of ? super java.lang.Number>
required: java.lang.Class<? extends java.lang.Number>
 Class<? extends Number> type2 = unknownBox.getContentType();
 ^
error: incompatible types
found : java.lang.Class<capture of ? extends capture of ? super java.lang.Number>
required: java.lang.Class<? super java.lang.Number>
 Class<? super Number> type3 = unknownBox.getContentType();
 ^

The key difference for lower bound wildcards is that the takeContentFrom method can be called for certain argument types, namely for those types that are
members of the type family denoted by Box<? extends Number> in our example. It is basically as though the takeContentFrom method in Box<? super Number>
had the signature takeContentFrom(Box<? extends Number>). Why is this? The compiler determines the signature of the takeContentFrom method in Box<?
super Number> as takeContentFrom(Box<? extends capture of ? super java.lang.Number>). Now, what does "? extends capture of ? super
java.lang.Number" mean? It is an unknown subtype of an unknown supertype of Number. No matter what this unknown supertype of Number may be, the
subtypes of Number would conform to this description.

Invocation of the getContentType method is permitted, as expected. Perhaps surprising is that fact that the return type is not Class<? super Number>, but only
Class<?>. This is because the return type is Class<capture of ? extends capture of ? super Number>, which is an unknown subtype of an unknown
supertype of Number. Just imagine the unknown supertype of Number were Object, then it could by any type. Hence we know nothing about the return type except
that it is an instantiation of class Class and Class<?> correctly describes it.

LINK TO THIS Technicalities.FAQ606

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized typ?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
In a wildcard instantiation, can I read and write fields whose type is the type parameter?
What is a wildcard instantiation?
What is a wildcard?
What is the capture of a wildcard?

Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard
parameterized type?

We can call methods that use the type parameter as a lower wildcard bound in the return type; the returned value is accessible through a wildcard instantiation
of the return type (which one depends on the wildcard parameterized type being used). We can call methods that use the type parameter as a lower wildcard

bound in an argument type; the argument type is restricted depending on the wildcard being use.

In a lower bound wildcard parameterized type, we can call methods that use the type parameter as a lower wildcard bound in the return type. The returned value is
accessible through a wildcard instantiation of the return type. In an unbounded wildcard parameterized type and an upper bound wildcard parameterized type the
return type is the unbounded wildcard instantiation of the return type. In a lower bound wildcard parameterized type the return type is more specific, namely the
lower bound wildcard instantiation of the return type. That is, a method in class Box that return Comparable<? super T> would return Comparable<?> in Box<?>
and Box<? extends Number> and would return Comparable<? super Number> in Box<? super Number>.

This matches the return types of methods with an upper bound wildcard; a method in class Box that return Comparable<? extends T> would return Comparable<?>
in Box<?> and Box<? super Number> and would return Comparable<? extends Number> in Box<? extends Number>. The reasoning for lower bound wildcard
parameterized types is the exactly the same as for upper bound wildcard parameterized types. The more specific return type in a lower bound wildcard
parameterized type stems from the fact that the return type of a method that returns Comparable<? super T> in the instantiation Box<? super Number> would be
Comparable<capture of ? super capture of ? super Number>, which boils down to Comparable<? super Number>.

More interesting is the invocation of methods that take arguments with lower wildcard bounds. We can call methods that use the type parameter as a lower wildcard
bound in an argument type. In an unbounded wildcard parameterized type and a lower bound wildcard parameterized type the only permitted argument type is the
argument type instantiated for type Object. That is, a method in class Box that takes an argument of type Comparable<? super Number> would in the
parameterized types Box<?> and Box<? super Number> accept arguments of Comparable<Object>. Note, this is different from methods that use the type
parameter as a upper wildcard bound in an argument type; they cannot be invokeds at all. The reason for this permitted argument type is that such a method would
have the signature method(Comparable<? super capture of ?>) in an unbounded parameterized type such as Box<?>, and "? super capture of ?" denotes an
unknown supertype of an unknown type. The ultimate supertype of all types is Object, hence Comparable<Object> is permitted as an argument type. And likewise
in Box<? super Number>, where the signature would involve "? super capture of ? super Number", and again Object is the only type that would fit.

In an upper bound wildcard parameterized type with upper bound Bound the permitted arguments types are the types that belong to the family denoted by
ArgumentType<? super Bound>. That is, a method in class Box that takes an argument of type Comparable<? super Number> would in the instantiation Box<?
extends Number> accept arguments from the type family Comparable<? super Number>. Note, this is similar to a method with an upper bound argument type in
an lower bound parameterized type; e.g. a method in class Box that takes an argument of type Comparable<? extends Number> would in the parameterized type
Box<? super Number> accept arguments from the type family Comparable<? extends Number>. The reason for the permitted argument types is that the compiler
determines the signature of such a method in Box<? extends Number> as method(Box<? super capture of ? extends Number>). " super capture of ?
extends Number" means unknown supertype of an unknown subtype of Number, in other words all supertypes of Number.

Unbounded wildcard parameterized type.

Example (access through unbounded wildcard):

class Box<T> {
 private T t;
 ...
 public int compareTo(Comparable<? super T> other) { return other.compareTo(t); }
 public Box<? super T> copy() { return new Box<T>(t); }
}
class Test {
 public static void main(String[] args) {
 Box<Number> numberBox = new Box<Number>(5L);
 Box<?> unknownBox = numberBox;

 Comparable<?> comparableToUnknown = new Integer(1);
 Comparable<Object> comparableToObject = ...;
 Comparable<? super Number> comparableToNumber = comparableToObject;

 int compared = 0;
 compared = unknownBox.compareTo(comparableToUnknown); // error
 compared = unknownBox.compareTo(comparableToObject); // ok
 compared = unknownBox.compareTo(comparableToNumber); // error

 Box<?> box1 = unknownBox.copy(); // ok
 Box<? extends Number> box2 = unknownBox.copy(); // error
 Box<? super Number> box3 = unknownBox.copy); // error
 }
}

error: compareTo(java.lang.Comparable<? super capture of ?>) in Box<capture of ?> cannot be applied to
(java.lang.Comparable<capture of ?>)
 compared = unknownBox.compareTo(comparableToUnknown);
 ^
error: compareTo(java.lang.Comparable<? super capture of ?>) in Box<capture of ?> cannot be applied to
(java.lang.Comparable<capture of ? super java.lang.Number>)
 compared = unknownBox.compareTo(comparableToNumber);
 ^
error: incompatible types
found : Box<capture of ? super capture of ?>
required: Box<? extends java.lang.Number>
 Box<? extends Number> box2 = unknownBox.copy();
 ^
error: incompatible types
found : Box<capture of ? super capture of ?>
required: Box<? super java.lang.Number>
 Box<? super Number> box3 = unknownBox.copy();
 ^

The example shows that method compareTo can only be invoked for arguments of type Comparable<Object> and that the return type of method copy is
Comparable<?>.

Upper bound wildcard parameterized type.

Example (access through upper bound wildcard):

class Box<T> {
 private T t;
 ...
 public int compareTo(Comparable<? super T> other) { return other.compareTo(t); }

 public Box<? super T> copy() { return new Box<T>(t); }
}
class Test {
 public static void main(String[] args) {
 Box<Number> numberBox = new Box<Number>(5L);
 Box<? extends Number> unknownBox = numberBox;

 Comparable<?> comparableToUnknown = new Integer(1);
 Comparable<Object> comparableToObject = ...;
 Comparable<? super Number> comparableToNumber = comparableToObject;

 int compared = 0;
 compared = unknownBox.compareTo(comparableToUnknown); // error
 compared = unknownBox.compareTo(comparableToObject); // ok
 compared = unknownBox.compareTo(comparableToNumber); // ok

 Box<?> box1 = unknownBox.copy(); // ok
 Box<? extends Number> box2 = unknownBox.copy(); // error
 Box<? super Number> box3 = unknownBox.copy); // error
 }
}

error: compareTo(java.lang.Comparable<? super capture of ? extends java.lang.Number>) in Box<capture of ? extends
java.lang.Number> cannot be applied to (java.lang.Comparable<capture of ?>)
 compared = unknownBox.compareTo(comparableToUnknown);
 ^
error: incompatible types
found : Box<capture of ? super capture of ? extends java.lang.Number>
required: Box<? extends java.lang.Number>
 Box<? extends Number> box2 = unknownBox.copy();
 ^
error: incompatible types
found : Box<capture of ? super capture of ? extends java.lang.Number>
required: Box<? super java.lang.Number>
 Box<? super Number> box3 = unknownBox.copy();
 ^

The example shows that method compareTo can only be invoked for arguments from the type family denoted by Comparable<? super Number> and that the return
type of method copy is Comparable<?>.

Lower bound wildcard parameterized type.

Example (access through lower bound wildcard):

class Box<T> {
 private T t;

 ...
 public int compareTo(Comparable<? super T> other) { return other.compareTo(t); }
 public Box<? super T> copy() { return new Box<T>(t); }
}
class Test {
 public static void main(String[] args) {
 Box<Number> numberBox = new Box<Number>(5L);
 Box<? super Number> unknownBox = numberBox;

 Comparable<?> comparableToUnknown = new Integer(1);
 Comparable<Object> comparableToObject = ...;
 Comparable<? super Number> comparableToNumber = comparableToObject;

 int compared = 0;
 compared = unknownBox.compareTo(comparableToUnknown); // error
 compared = unknownBox.compareTo(comparableToObject); // ok
 compared = unknownBox.compareTo(comparableToNumber); // error

 Box<?> box1 = unknownBox.copy(); // ok
 Box<? extends Number> box2 = unknownBox.copy(); // error
 Box<? super Number> box3 = unknownBox.copy); // ok
 }
}

error: compareTo(java.lang.Comparable<? super capture of ? super java.lang.Number>) in Box<capture of ? super
java.lang.Number> cannot be applied to (java.lang.Comparable<capture of ?>)
 compared = unknownBox.compareTo(comparableToUnknown);
 ^
error: compareTo(java.lang.Comparable<? super capture of ? super java.lang.Number>) in Box<capture of ? super
java.lang.Number> cannot be applied to (java.lang.Comparable<capture of ? super java.lang.Number>)
 compared = unknownBox.compareTo(comparableToNumber);
 ^
error: incompatible types
found : Box<capture of ? super capture of ? super java.lang.Number>
required: Box<? extends java.lang.Number>
 Box<? extends Number> box3 = unknownBox.copy();
 ^

The example shows that method compareTo can only be invoked for arguments of type Comparable<Object> and that the return type of method copy is
Comparable<? super Number>.

LINK TO THIS Technicalities.FAQ607

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?

Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
In a wildcard parameterized type, can I read and write fields whose type is the type parameter?
What is a wildcard instantiation?
What is a wildcard?
What is the capture of a wildcard?

In a wildcard parameterized type, can I read and write fields whose type is the type parameter?

It depends on the kind of wildcard.

In a wildcard parameterized type a field whose type is the type parameter of the enclosing generic class is of unknown type. Depending on the wildcard (whether it
is unbounded or has an upper or lower bound) different kinds of access are permitted or disallowed.

Unbounded wildcards.

Assignment to a field of the "unknown" type is rejected because the compiler cannot judge whether the object to be assigned is an acceptable one. Read access to a
field of the "unknown" type is permitted, but the field has no specific type and must be refered to through a reference of type Object.

Example:

class Box<T> {
 public T t; // public just for sake of demonstration
 ...
}
class Test {
 public static void main(String[] args) {
 Box<?> box = new Box<String>("abc");

 box.t = "xyz"; // error
 box.t = null; // ok

 String s = box.t; // error
 Object o = box.t; // ok
 }
}

Wildcards with an upper bound.

The same rules apply to wildcard parameterized type with an upper bound wildcard.

Example:

class Box<T> {
 public T t; // public just for sake of demonstration
 ...
}
class Test {
 public static void main(String[] args) {
 Box<? extends Number> box = new Box<Long>(0L);

 box.t = 1L; // error
 box.t = null; // ok

 Number n = box.t; // ok
 Object o = box.t; // ok
 }
}

The only difference that a field of "unknown" type is known to be compatible to the upper bound. Hence we can assign the field to a reference variable of type
Number in our example.

Wildcards with a lower bound.

The rules for wildcard parameterized types with a lower bound wildcard are the other way round. We can assign null or a value whose type is the lower bound or a
subtype thereof, but we cannot assign a value that is of a supertype of the lower bound. And we must not make any assumptions regarding the type of the field; it
must be treated like an Object.

Example:

class Box<T> {
 public T t; // public just for sake of demonstration
 ...
}
class Test {
 public static void main(String[] args) {
 Box<? super Long> box = new Box<Number>(0L);
 Number number = new Integer(1);

 box.t = 1L; // ok
 box.t = null; // ok
 box.t = number; // error

 Long l = box.t; // error
 Number n = box.t; // error
 Object o = box.t; // ok
 }
}

LINK TO THIS Technicalities.FAQ608

REFERENCES Which methods and fields are accessible/inaccessible through a reference variable of a wildcard type?
Which methods that use the type parameter in the argument or return type are accessible in an unbounded wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in an upper bound wildcard parameterized type?
Which methods that use the type parameter in the argument or return type are accessible in a lower bound wildcard parameterized type?
Which methods that use the type parameter as type argument of a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as upper wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
Which methods that use the type parameter as lower wildcard bound in a parameterized argument or return type are accessible in a wildcard parameterized type?
In a wildcard parameterized type, can I read and write fields whose type is the type parameter?
What is a wildcard instantiation?
What is a wildcard?
What is an unbounded wildcard?
What is a bounded wildcard?

Is it really impossible to create an object whose type is a wildcard parameterized type?

It is actually illegal and the compiler tries to prevent it, but there's a workaround.

The creation of objects of a wildcard parameterized type is discouraged: it is illegal that a wildcard parameterized type appears in a new expression.

Example (of illegal creation of objects of a wildcard parameterized type):

class Sequence<E> {
 public Sequence() {...}
 public Sequence(int size) {...}
public <F extends E> Sequence(F arg) {...}
public <F extends E> Sequence(F[] a) {...}
 public Sequence(Sequence<? extends E> s) {...}
}

Sequence<?> seq1 = new Sequence<?>(); // error
Sequence<?> seq2 = new Sequence<?>(10); // error

Sequence<String> s = new Sequence<String>();
... populate the sequence ...

Sequence<? super String> seq3 = new Sequence<? super String>("xyz"); // error
Sequence<? super String> seq4 =new Sequence<? super String>(new String[] {"abc","ABC"}); // error
Sequence<? super String> seq5 = new Sequence<? super String>(s); // error

The compiler rejects all attempts to create an object of wildcard types such as Sequence<?> or Sequence<? super String>.

The compiler's effort to prevent the creation of objects of a wildcard parameterized type can easily be circumvented. It is unlikely that you will ever want to create
an object of a wildcard parameterized type, but should you ever need one, here's the workaround.

Instead of directly creating the object of the wildcard parameterized type via a new expression you define a generic factory method that creates the object.

Example (of creation of objects of a wildcard parameterized type; workaround):

class Factory {
 public interface Dummy<T> {}
 public final static Dummy<?> unboundedDummy = null;
 public final static Dummy<? super String> superStringDummy = null;

 public static <T> Sequence<T> make(Dummy<T> arg) {
 return new Sequence<T>();
 }
 public static <T> Sequence<T> make(Dummy<T> arg, int size) {
 return new Sequence<T>(size);
 }
 public static <T,S extends T> Sequence<T> make(Dummy<T> d, S arg) {
 return new Sequence<T>(arg);
 }
 public static <T,S extends T> Sequence<T> make(Dummy<T> d, S[] array) {
 return new Sequence<T>(array);
 }
 public static <T> Sequence<T> make(Dummy<T> d, Sequence<? extends T> seq) {
 return new Sequence<T>(seq);
 }
}

Sequence<?> seq1 = Factory.make(Factory.unboundedDummy); // fine
Sequence<?> seq2 = Factory.make(Factory.unboundedDummy,10); // fine

Sequence<String> s = new Sequence<String>();
... populate the sequence ...
Sequence<? super String> seq3 = Factory.make(Factory.superStringDummy,"xyz"); // fine
Sequence<? super String> seq4 = Factory.make(Factory.superStringDummy,new String[] {"abc","ABC"}); // fine
Sequence<? super String> seq5 = Factory.make(Factory.superStringDummy,s); // fine

The trick is defining a generic factory method that takes a dummy argument for each constructor that you had otherwise used. This dummy argument must be a of
a generic type and is needed so that the compiler can infer the type argument when the factory method is invoked. When the method is invoked with a dummy
argument that is of a wildcard type, then the compiler infers that the factory method's type argument is that particular wildcard and consequently the factory method
creates an object of the corresponding wildcard parameterized type.

In the example the make method is first invoked twice with a dummy argument of the unbounded wildcard type Dummy<?>. The type argument T is infered as T:=?
(or more precisely T:=capture of ?) and hence the make method creates an object of type Sequence<?>. The subsequent three invocations use a dummy argument of
the unbounded wildcard type Dummy<? super String>. Consequently, the compiler infers T as T:=? super String (or more precisely T:=capture of ? super String). In
addition, the compiler infers S as S:=String and checks that S is a subtype of T.

As mentioned above, it is unlikely you will ever need this workaround.

LINK TO THIS Technicalities.FAQ609

REFERENCES What is a wildcard parameterized type?
Can I create an object whose type is a wildcard parameterized type?
What is type argument inference?

Cast and instanceof

Which types can or must not appear as target type in an instanceof expression?

Only reifiable types are permitted.

It is a compile-time error if the reference type mentioned after the instanceof operator does not denote a reifiable type. In other words, concrete and bounded
wildcard parameterized types are NOT permitted in an instanceof expression.

Examples:

 Object o = new LinkedList<Long>();

 System.out.println (o instanceof List);
 System.out.println (o instanceof List<?>);
 System.out.println (o instanceof List<Long>); // error
 System.out.println (o instanceof List<? extends Number>); // error
 System.out.println (o instanceof List<? super Number>); // error

The reason for disallowing non-reifiable types (i.e., instantiations of a generic type with at least one type arguments that is a concrete type or a bounded wildcard)
in instanceof expression is that these parameterized types do not have an exact runtime type representation. Their dynamic type after type erasure is just the raw
type. The evaluation of an instanceof expression could at best check whether the object in question is an instance of the raw type. In the example, the
expression (o instanceof List<Long>) would check whether o is an instance of type List, which is a check different from what the source code suggests. In
order to avoid confusion, the non-reifiable types are prohibited in instanceof expression.

Only the reifiable types (i.e., the raw type and the unbounded wildcard parameterized type) are permitted in an instanceof expression. The reifiable types do not
lose any type information during translation by type erasure. For this reason, the instanceof check makes sense and is allowed.

LINK TO THIS Technicalities.FAQ701

REFERENCES What is a reifiable type?
What is an unbounded wildcard instantiation?

Overloading and Overriding

What is method overriding?

When a subtype redefines a method that was inherited from a supertype.

Overriding is what we do when we derive subtypes from supertypes and specialize the subtype's behaviour by means of implementing in the subtype a specialized
version of a method inherited from the supertype. Overriding is one of the key concepts of object-oriented programming.

Example (of method overriding):

class Super {
 public Type method(Type arg) { ... }
}
class Sub extends Super {
 public Type method(Type arg) { ... } // overrides Super.method
}

The purpose of overriding is polymorphic method dispatch, that is, when the method is invoked through a reference of the supertype and that reference refers to an
instance of the subtype then the subtype version of the method is invoked.

Example (of polymorphic method dispatch):

Super ref1 = new Super();
Super ref2 = new Sub();

ref1.method(new Type()); // calls Super.method
ref2.method(new Type()); // calls Sub.method

When the overridden method is an abstract method or when the supertype is an interface, the it is said that the overriding method implements the supertype's method
declaration.

Example (of an overriding method that implements a supertype's method):

interface Callable<V> {
 V call();
}
class Task implements Callable<Long> {
 public Long call() { ... } // implements Callable<Long>.call
}

LINK TO THIS Technicalities.FAQ801

REFERENCES
What is method overriding?
What is method overloading?

What is the @Override annotation?
What is a method signature?
What is a subsignature?
What are override-equivalent signatures?
When does a method override its supertype's method?
Can a method of a non-generic subtype override a method of a generic supertype?
Can a method of a generic subtype override a method of a generic supertype?
Can a generic method override a generic one?
Can a non-generic method override a generic one?
Can a generic method override a non-generic one?
Why doesn't method overriding work as I expect it?

What is method overloading?

When a class has two methods with the same name, but signatures that are not override-equivalent.

Method overloading happens among methods defined in the same type, when the methods have the same name and differ in the number or type of arguments.

Example (of method overloading):

class Container {
 public void remove(int index) { ... }
 public void remove(Object o) { ... } // overloads
}

The overloading methods need not necessarily be defined in the same type, but can also be inherited from a supertype.

Example (of method overloading):

class Super {
 public void method(String arg) { ... }
 public void method(StringBuffer arg) { ... } // overloads
}
class Sub extends Super {
 public void method(StringBuilder arg) { ... } // overloads
}

In this example, all three versions of the method overload each other because they have the same name but different argument types. When the method is invoked
the compiler picks the best match from the three available candidates. This process is called overload resolution.

Example (of overload resolution):

Sub ref = new Sub();

ref.method("ABC"); // calls Super.method(String)

ref.method(new StringBuilder("ABC")); // calls Sub.method(StringBuilder)

The return type is irrelevant for overloading, that is, overloaded methods can have different return types. It is an error if the difference is only in the return type.

Example (of method overloading):

class Container {
 public boolean remove(Object o) { ... }
 public Object remove(int index) { ... } // overloads
 public void remove(int index) { ... } // error: already defined
}

The first two methods overload each other, because they have the same name and different arguments type. The last two methods are in conflict, because the have
the same name and the same argument type and differ only in the return type. The general rule is that overloaded methods must have the same name but different
method signatures, and the return type is not part of a method signature. A more precise definition of method signature is given in FAQ entry FAQ810.

Generic methods can be overloaded as well.

Example (of overloaded generic methods):

class SomeClass {
 public <T> void method(T arg) { ... }
 public <T extends Number> void method(T arg) { ... } // overloads
 public void method(Long arg) { ... } // overloads
}

These three methods have different signatures. Even the first and the second method differ, because they have different argument types, namely a type parameter
with bound Object and a type parameter with bound with bound Number. This is because the type parameters of a generic method including the type parameter
bounds are part of the method signature.

Method overloading is sometimes confused with method overriding. Overriding happens among a method in a subtype and a method with the same name inherited
from a supertype, if the signatures of those methods are override-equivalent. This means that methods in the same class never override each other; they can only
overload each other. But methods in a subtype can either override or overload a supertype's method with the same name. It is sometimes difficult to tell the
difference between overloading and overriding. The rule is: the subtype method overloads the supertype method if it is not override-equivalent. Override-
equivalence is explained in more detail in FAQ entry FAQ812.

Example (of method overloading vs. overriding):

class Super {
 public void method(String arg) { ... }
}
class Sub extends Super {
 public void method(String arg) { ... } // overrides
 public void method(StringBuilder arg) { ... } // overloads
}

The first method in the subtype has an override-equivalent signature, basically because it has the same signature as the supertype method. The second method has
a different argument type and therefore is not override-equivalent and hence overloads the supertype method.

The rules for overriding are more complex than sketeched out above; they are discussed in detail in the subsequent FAQ entries. In particular, overriding does not
only require override-equivalent signatures, but additionally a compatible return type and a compatible throws clause. No such rules apply to overloading.

Example (of overloaded methods with different return types and throws clauses):

class SomeClass {
 public void method(String arg) { ... }
 public void method(StringBuffer arg) throws IllegalArgumentException { ... } // overloads
 public boolean method(StringBuilder arg) { ... } // overloads
}

There is one additional rule, that applies to methods in general: methods declared in the same type (or inherited from a supertype) must not have the same erasure.
This is because generics are translated by type erasure. Two methods with the same erasure would have identical signatures in the byte code and the virtual
machine could not distinguish between them. This is prohibited and the compiler issues an error method if two method have the same erasure.

Example (of conflicting erasures):

class SomeClass {
 public <T extends Number> void method(T arg) { ... }
 public void method(Number arg) { ... } // error: already defined
}

Before type erasure the two methods have different signatures, namely <$T1_extends_Number>method($T1_extends_Number) and method(Number). After type
erasure they both have the signature method(Number) and consequently the compiler reports an error.

LINK TO THIS Technicalities.FAQ802

REFERENCES What is overload resolution?
Why doesn't method overloading work as I expect it?

What is the @Override annotation?

An annotation that you can attach to a method so that the compiler issues an error if the annotated method does not override any supertype method.

Overriding and overloading are often confused. If you are in doubt, you can annotate a subtype's method with the standard annotation java.lang.@Override. The
compiler then checks whether the annotated method overrides a supertype method. If not, it reports an error.

Example (of using the @Override annotation):

class Super {
 public <T> void method(T arg) { ... }
}
class Sub extends Super {
 @Override public <T extends Number> void method(T arg) { ... } // error: name clash

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Override.html

}

error: method does not override a method from its superclass
 @Override public <T extends Number> void method(T arg) {
 ^

LINK TO THIS Technicalities.FAQ803

REFERENCES What is method overriding?
What is method overloading?

What is a method signature?

An identification of a method that consist of the method's name and its arguments types.

A method signature consists of the method's name and its arguments types. This is different from a method descriptor, which is the signature plus the return type.
In case of generic methods, the type parameters are part of the signature. Method signatures play a role in overloading and overriding.

Examples:

Declaration Signature
void method(String arg) method(String)

int method(String arg) method(String)

String method(String arg1, int arg2) throws Exception method(String,int)

void method(List<? extends Number> list) method(List<?_extends_Number>)

T method(T arg)
*)

where T is enclosing class's type parameter
method($T1_extends_Object)

void add(K key, V val)
*)

with type parameters K and V from enclosing class
add($T1_extends_Object,$T2_extends_Object)

<T> T method(T arg) <$T1_extends_Object>method
($T1_extends_Object)

<E> int method(E arg) <$T1_extends_Object>method
($T1_extends_Object)

<T extends Number> T method(T arg) <$T1_extends_Number>method
($T1_extends_Number)

<A extends I&J, B extends J&I> void method(A a, B b) <$T1_extends_I&J,$T2_extends_I&J>method
($T1_extends_I&J,$T2_extends_I&J)

<$T1 extends Object>method

<T> void method(List<T> list) (List<$T1_extends_Object>)

<S extends Number> void method(List<S> list) <$T1_extends_Number>method
(List<$T1_extends_Number>)

<E> void sort(List<? extends E> list) <$T1_extends_Object>sort
(List<? extends $T1_extends_Object>)

<E extends Comparable<Number>> void sort(List<E> list) <$T1_extends_Comparable<Number>>sort
(List<$T1_extends_Comparable<Number>>)

<E extends Comparable<E>> void sort(List<E> list) <$T1_extends_Comparable<$T1_extends_Comparable>>sort
(List<$T1_extends_Comparable<$T1_extends_Comparable>>)

<E extends Comparable<? super K>> void sort(List<E> l)
*)

where K is enclosing class's type parameter
<$T1_extends_Comparable<?_super_$T2_extends_Object>>sort
(List<$T1_extends_Comparable<$T2_extends_Object>>)

The terms $Tn_extends_Bound1&...&Boundn stand for synthetic type variables. These synthetic names are used in lieu of the original names because the name of a
type variable is irrelevant for the signature. For instance, the methods <T> void method(T arg) and <S> void method(S arg) have the same signature; they are
a method named method with one unbounded type parameter and one method parameter whose type is the unbounded type parameter. Basically, the compiler
renames all type variables of a generic method and uses synthetic names instead of the actual names.

The terms $Bound1&...&Boundn denote the type variable's bounds. For the purpose of a signature, the order of the bounds is irrelevant, that is, "A extends I&J" is
equivalent to "B extends J&I". Just imagine the compiler would order the bounds alphabetically.

LINK TO THIS Technicalities.FAQ810

REFERENCES
What is method overriding?
What is a subsignature?
What are override-equivalent signatures?
When does a method override its supertype's method?

What is a subsignature?

A method signature that is identical to another method signature, or identical to the erasure of another method signature.

Subsignatures are relevant in conjunction with overriding. A prerequisite for overriding is that the subtype method's signature is a subsignature of the supertype
method's signature.

A signature is a subsignature of another signature if:

the two signatures are identical, or
the signature is identical to the erasure of the other signature.

Example (subsignatures):

class Super {
 public void setName(String arg) { ... }

 public void setNames(Collection<String>c) { ... }
 public void printCollection(Collection<?>c) { ... }
}
class Sub extends Super {
 public void setName(String arg) { ... } // subsignature
 public void setNames(Collection c) { ... } // subsignature
 public void printCollection(Collection c) { ... } // subsignature
}

In the example, the subclass version of the setName method is a subsignature of the superclass version of the method, because it has the same signature. The
subclass versions of the setNamesand printCollection methods are subsignatures of the superclass versions of the methods, because their signatures are identical
to the erasures of the superclass's methods.

Note, that in the case of the setNames method an unchecked warning is issued. The reasons for this warning are discussed in FAQ entry FAQ812. The unchecked
warning is issued whenever an argument type of the superclass method is a parameterized type and the corresponding argument type in the subclass method is a raw
type, unless the parameterized type is the unbounded wildcard instantiation of the generic type.

LINK TO THIS Technicalities.FAQ811

REFERENCES
What is method overriding?
What is a method signature?
What are override-equivalent signatures?
When does a method override its supertype's method?

What are override-equivalent signatures?

Two method signatures where one signature is a subsignature of the other.

Override-equivalent signatures are relevant in conjunction with overriding and overloading. We talk of override-equivalent signatures when a subtype method's
signature is a subsignature of a supertype method's signature.

The term subsignature was explained in FAQ entry FAQ811: A signature is a subsignature of another signature if the signature is identical to the other signature or
identical to the erasure of the other signature.

Override-equivalence is a prerequisite of method overriding.

We talk of overriding if the signature of a subtype's method is override-equivalent to (synonym to: "is a subsignature of") a supertype's method.
We talk of overloading if a class has two methods with the same name, but signatures that are not override-equivalent, that is, neither is a subsignature of the
other.

Example (overloading and overriding):

class Super {

 public void setName(String arg) { ... }
}
class Sub extends Super {
 public void setName(StringBuilder arg) { ... } // overloads
 public void setName(String arg) { ... } // overrides
}

In the example, the two setName methods in the subclass have the same name, but different signatures: one method takes a String argument, the other takes a
StringBuilder argument. As the two signatures are different (and neither is the subsignature of the other), these two methods are not override-equivalent and
hence the overload.
In constrast, the two versions of the setName method taking a String argument in the super- and subclass override. This is because they have identical and
therefore override-equivalent signatures.

In the example above, the erasure of the methods is irrelevant, because none of the methods has a generic argument type. Let us consider an examples that
involves generic types.

Example (overloading and overriding):

class Super {
 public void printCollection(Collection<?> c) { ... }
}
class Sub extends Super {
 public void printCollection(List<?> c) { ... } // overloads
 public void printCollection(Collection c) { ... } // overrides
}

The two printCollection methods in the subclass have the same name, but different signatures: one method takes a List<?> argument, the other takes a
Collection argument. As the two signatures are different (and neither is the subsignature of the other), these two methods overload.
In constrast, the two versions of the printCollection method taking a Collection<?> argument in the superclass and a Collection argument in the subclass
override although the methods do not have identical signatures. But the signatures are almost identical: the subclass signature is the erasure of the superclass
signature.

Note, that the converse is not permitted. If the superclass method had a signature that is identical to the erasure of a subclass method, the compiler would issue an
error message. This is neither overloading nor overriding, but just a name clash.

Example (neither overloading nor overriding):

class Super {
 public void printCollection(Collection c) { ... }
}
class Sub extends Super {
 public void printCollection(Collection<?> c) { ... } // error
}

error: name clash: printCollection(List<?>) in Sub and printCollection(List) in Super
have the same erasure, yet neither overrides the other

 class Sub extends Super {
 ^

The notion of override-equivalent signatures is slightly more complex among generic methods. See FAQ820 and subsequent entries for further details and
examples.

LINK TO THIS Technicalities.FAQ812

REFERENCES
What is method overriding?
What is a method signature?
What is a subsignature?
When does a method override its supertype's method?
Can a method of a non-generic subtype override a method of a generic supertype?
Can a method of a generic subtype override a method of a generic supertype?
Can a generic method override a generic one?
Can a non-generic method override a generic one?
Can a generic method override a non-generic one?

When does a method override its supertype's method?

When the subtype's method has a signature that is a subsignature of the supertype's method and the two methods have compatible return types and throws
clauses.

A subtype's method overrides a supertype's method if the subtype's method has a signature that is:

identical to the supertype's method's signature, or
identical to the erasure of the supertype's method's signature.

It is said that the subtype method has a subsignature or that the two signatures are override-equivalent.

Subsignatures

First an example where the subtype's method has the same signature as the supertype's method.

Example (of overriding methods with identical signatures):

class Super {
 public void method(String arg) { ... }
}
class Sub extends Super {
 public void method(String arg) { ... } // overrides
}

Both methods have the same signature, namely method(String), and for this reason the subclass's method overrides the superclass's method.

Second, an example where the subtype's method has a signature whose erasure is identical to the signature of the supertype's method.

Example (of overriding methods with generics involved):

class Super {
 public void printCollection(Collection<?> c) { ... }
}
class Sub extends Super {
 public void printCollection(Collection c) { ... } // overrides
}

The erasures of the methods are the same, namely printCollection(Collection). In this situation, the erased subtype method is considered an overriding version
of the non-erased supertype method.

This kind of overriding is permitted in order to allow that legacy supertypes can be re-engineered and generified without affecting any existing subtypes of the
legacy supertype. Imagine the supertype had originally not used any generics. In that original situation, the signatures of supertype and subtype method had been
identical. After generification of the supertype the signatures are different. Without the rule that the subtype method can be the erasure of the supertype method all
subtypes would also need to be re-engineered and generified. Fortunately, the additional rule renders this re-engineering effort unnecessary and the generification of
the supertype does not affect overriding methods in subtypes.

There are additional rules for overriding. When a subtype's method overrides a supertype's method, then:

the subtype method's return type must be substitutable for the supertype method's return type, and
the throws clauses of both methods must not be in conflict.

Substitutable Return Types

Let us first consider some examples of substitutable and incompatible return types before we look into conflicting throws clauses.

Example (incompatible return types):

class Super {
 public void method(String arg) { ... }
}
class Sub extends Super {
 public int method(String arg) { ... } // error
}

error: method(String) in Sub cannot override method(String) in Super;
attempting to use incompatible return type
found : int
required: void

 public int method(String arg) { ... }
 ^

Both methods have the same signature, but non-substitutable return types. A subtype method's return type RSub is substitutable for a supertype method's return type
RSuper if:

both type are void
both types are the same primitive type
RSub is identical to RSuper
RSub is a subtype of RSuper
RSub is a raw type that is identical to the erasure of RSuper
RSub is a raw type that is a subtype of the erasure of RSuper

The last two situations lead to an unchecked warning unless RSuper is an unbounded wildcard instantiation.

Example (substitutable return types):

class Super {
 public Super copy() { ... }
 public List<String> getList() { ... }
 public Map getLinks() { ... }
}
class Sub extends Super {
 public Sub copy() { ... } // overrides
 public ArrayList<String> getList() { ... } // overrides
 public Map<String,File> getLinks() { ... } // overrides
}

In these examples, the subtype method's return type is a subtype of the supertype method's return type. The technical term for this kind of substitutability is
covariant return types.

Note, that in addition to the regular super-/subtype relationship, an instantiation of a generic type is also considered a subtype of the corresponding raw type. The
getLinks method in the code snippet above illustrates this kind of substitutable return types: the supertype method returns the raw type Map and the subtype method
returns the instantiation Map<String,File>.

The converse is also permitted, namely a supertype version of a method that returns an instantiation and a subtype version that return the corresponding raw type.
But this kind of overriding is not type-safe unless the supertype method's return type is an unbounded wildcard instantiation, as illustrated in the code sample
below.

Example (substitutable return types):

class Super {
 public Class<?> getType() { ... }
 public Map<String,File> getLinks() { ... }
}
class Sub extends Super {

 public Class getType() { ... } // overrides
 public Map getLinks() { ... } // overrides with unchecked warning
}

warning: getLinks() in Sub overrides getLinks() in Super;
return type requires unchecked conversion
found : java.util.Map
required: java.util.Map<java.lang.String,java.io.File>
 public Map getLinks() { ... }
 ^

Conflicting throws Clauses

The supertype and the overriding subtype method must not have conflicting throws clauses.

Example (conflicting throws clauses):

class Super {
 public void method() { ... }
}
class Sub extends Super {
 public void method() throws UserException { ... } // error
}

error: method() in Sub cannot override method() in Super;
overridden method does not throw UserException
 public void method() throws UserException { ... }
 ^

Both methods have the same signature, but conflicting throws clauses. The overriding subtype method may not be declared to throw more checked exceptions than
the overridden supertype method. The throws clause of the supertype method must at least contain a supertype of each exception type in the throws clause of the
subtype method.

Example (compatible throws clauses):

class Super {
 public void method() throws IOException, InterruptedException { ... }
}
class Sub extends Super {
 public void method() throws FileNotFoundException { ... } // overrides
}

LINK TO THIS Technicalities.FAQ813

REFERENCES What is method overriding?
What is a method signature?

What is a subsignature?
What are override-equivalent signatures?
What are covariant-return types?
What are substitutable return types?
Can a method of a non-generic subtype override a method of a generic supertype?
Can a method of a generic subtype override a method of a generic supertype?
Can a generic method override a generic one?
Can a non-generic method override a generic one?
Can a generic method override a non-generic one?
Why doesn't method overriding work as I expect it?

What are covariant return types?

Return types of overriding methods where the supertype method's return type is a supertype of the subtype method's return type.

When a method defined in a subtype overrides a method defined in a supertype then there are certain rules for the return types of those methods. Either the return
types are identical, or the subtype method's return type is a raw type that is identical to the supertype method's return type. Java allows one exception from this
rule: the subtype method's return type is allowed to be a subtype of the supertype method's return type, or the subtype method's return type is a raw type that is
identical to a subtype of the supertype method's return type.

Example (substitutable return types):

class Super {
 public Super copy() { ... }
 public List<String> getList() { ... }
 public Map getLinks() { ... }
}
class Sub extends Super {
 public Sub copy() { ... } // overrides
 public ArrayList<String> getList() { ... } // overrides
 public Map<String,File> getLinks() { ... } // overrides
}

In these examples, the subtype method's return type is a subtype of the supertype method's return type. Note, that an instantiation of a generic type is considered a
subtype of the corresponding raw type. The technical term for this kind of return type substitutability is covariant return types.

LINK TO THIS Technicalities.FAQ814

REFERENCES
What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is a subsignature?
What are override-equivalent signatures?

When does a method override its supertype's method?
What are substitutable return types?

What are substitutable return types?

The return type of an overriding subclass method must be substitutable for the superclass method's return type.

Substitutable return types are required when a method overrides another method. In that situation the subtype method's return type must be substitutable for the
supertype method's return type.

A subtype method's return type RSub is considere substitutable for a supertype method's return type RSuper if:

both type are void
both types are the same primitive type
RSub is identical to RSuper
RSub is a subtype of RSuper
RSub is a raw type that is identical to the erasure of RSuper
RSub is a raw type that is a subtype of the erasure of RSuper

The last two situations lead to an unchecked warning unless RSuper is an unbounded wildcard instantiaion.

Let's take a look at a couple of examples. In the following code snippet the overriding method has the same return type as its superclass method.

Example (plain substitutable return types):

class Super {
 public void setName(String s) { ... }
 public boolean equals(Object other) { ... }
 public String toString() { ... }
}
class Sub extends Super {
 public void setName(String s) { ... } // overrides
 public boolean equals(Object other) { ... } // overrides
 public String toString() { ... } // overrides
}

A little more exciting are the cases in which the subtype method's return type is a subtype of the supertype method's return type. In this case we talk of
covariantreturn types.

Example (covariant substitutable return types):

class Super {
 public Super copy() { ... }
 public getNames() { ... }

List<String>
 public Map getLinks() { ... }
}
class Sub extends Super {
 public Sub copy() { ... } // overrides
 public ArrayList<String> getNames() { ... } // overrides
 public Map<String,File> getLinks() { ... } // overrides
}

Worth mentioning is that an instantiation of a generic type is considered a subtype of the corresponding raw type in this context. The getLinks method illustrates
this case. The supertype method returns the raw type Map and the overriding subtype method returns the more specific type Map<String,File>.

The converse is permitted, too, but is generally not type-safe. The safe situation is when the subtype's method returns a raw type and the supertype's method returns
the wildcard instantiation of the corresponding generic type or of a generic supertype.

Example (raw substitutable return types):

class Super {
 public Class<?> getContentType() { ... }
 public List<?> asList() { ... }
}
class Sub extends Super {
 public Class getContentType() { ... } // overrides
 public LinkedList asList() { ... } // overrides
}

The getContentType method in the supertype returns the wildcard instantiation Class<?> and the subtype method's return type Class, the raw type, is considered a
substitutable return type. Note, that the subtype method's return type can additionally be covariant, that is, a raw type that is a subtype of the erasure of the
supertype method's return type. This is illustrated by the asList method.

When the supertype method's return type is an instantiation different from a wildcard instantation, then the substitution by the raw type in the subclass method is not
type-safe and the compiler issues a warning.

Example (raw substitutable return types):

class Super {
 public Class<Super> getThisType() { ... }
 public List<String> asStrings() { ... }
}
class Sub extends Super {
 public Class getThisType() { ... } // overrides with unchecked warning
 public LinkedList asStrings() { ... } // overrides with unchecked warning
}

The type-safety problem is that the superclass method getThisType for instance promises that a type token of type Class<Super> is returned, while the subclass
method only returns a type token of the raw type Class, which may or may not be compatible with Class<Super>. The compiler cannot prevent that the subtype
method returns an inappropriate type token that is actually of type Class<Alien>.

LINK TO THIS Technicalities.FAQ815

REFERENCES
What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is a subsignature?
What are override-equivalent signatures?
When does a method override its supertype's method?
What are covariant-return types?
Can a method of a non-generic subtype override a method of a generic supertype?
Can a method of a generic subtype override a method of a generic supertype?
Can a generic method override a generic one?
Can a non-generic method override a generic one?
Can a generic method override a non-generic one?
What is overload resolution?
How does overload resolution work when generic methods are involved?
Why doesn't method overloading work as I expect it?
Why doesn't method overriding work as I expect it?

Can a method of a non-generic subtype override a method of a generic supertype?

Yes.

This FAQ entry discusses whether and when methods of a regular, non-generic subtype override methods inherited from a generic supertype. The question comes
up because overriding requires that the method signatures are override-equivalent. If the supertype is generic then its method signatures might involve a type
parameter. At the same time, the subtype is non-generic and its method signatures will not involve type parameters. Hence the signatures are different, which raises
the question whether overriding is possible when the supertype is generic and the subtype is not.

The answer is: Yes, it is possible. A non-generic type can extend or implement a concrete instantiation of a generic supertype and then its methods can override
methods from the generic supertype. Here is an example:

Example (of a non-generic subtype with overriding methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 public T get() { ... }
}
class Sub extends Super<Number> {
 ...
 public void set(Number arg) { ... } // overrides

 public Number get() { ... } // overrides
}

The subtype methods override the corresponding supertype methods. The subtype derives from a certain instantiation of the supertype, namely Super<Number> in
the example. For this reason, all signatures in the subtype, where T is replaced by Number, are override-equivalent signatures.

Let us consider some deviations from this straigth-forward case. What if we defined the following methods in the subclass?

Example (of a non-generic subtype with redefined supertype methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 ...
}
class Sub extends Super<Number> {
 ...
 public void set(Object arg) { ... } // error: same erasure
 public void set(Long arg) { ... } // overloads
}

The first set method in the subclass is rejected because it has the same erasure as its superclass's version of the set method, namely void set(Object).
The second set method in the subclass is not override-equivalent, because its signature is truly different from the supertype method's signature; they have a
different argument type. For this reason it overloads the set method, instead of overriding it.

Let us consider the get methods. What if we defined the following methods in the subclass?

Example (of a non-generic subtype with redefined supertype methods):

class Super<T> {
 ...
 public T get() { ... }
 ...
}
class Sub extends Super<Number> {
 ...
 public Object get() { ... } // error: incompatible return type
 public Long get() { ... } // overrides
}

The Sub.get()method that returns Object is recognized as a potentially overriding method, but with incompatible return type, and is therefore rejected with an
error method.
The Sub.get() method that returns Long has an override-equivalent signature, because its return type is a subtype of the supertype method's return type (covariant
return type).
Naturally, the two get methods cannot coexist in the same class anyway, because their signatures are the same and they only differ in the return type.

LINK TO THIS Technicalities.FAQ820

REFERENCES
What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is a subsignature?
What are override-equivalent signatures?
When does a method override its supertype's method?
What are covariant-return types?
What are substitutable return types?
Can a method of a generic subtype override a method of a generic supertype?
Why doesn't method overriding work as I expect it?

Can a method of a generic subtype override a method of a generic supertype?

Yes, but make sure you do not inadvertently overload instead of override.

This FAQ entry discusses whether and when methods of a generic subtype can override methods of a generic supertype. Method signatures in the sub- and the
supertype may involve type parameters of the respective enclosing class. What is the required relationship between type variables in sub- and supertype methods in
order to allow for method overriding?

The answer is: Yes, methods of a generic subtype can override methods of a generic supertype, but it is not always trivial to get it right and it is common that
mistakes are made and that overriding is confused with overloading.

Let us start with a simple example:

Example (of a generic subtype with override-equivalent methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 public T get() { ... }
}
class Sub<S> extends Super<S> {
 ...
 public void set(S arg) { ... } // overrides
 public S get() { ... } // overrides
}

The subtype methods override the corresponding supertype methods. The generic subtype derives from a certain instantiation of the supertype, namely Super<S> in
the example, where S is the subtype's type parameter. Since the names of type parameters are irrelevant for the method signatures, the corresponding methods in
super- and subtype have identical signatures, namely set($T1_extends_Object) and get() and identical return types.

The remainder of this FAQ entry discusses slightly more complex overriding situation for further illustration of the principle.

Here is another example of successful overriding.

Example (of a generic subtype with override-equivalent methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 public T get() { ... }
}
class Sub<A,B> extends Super<A> {
 ...
 public void set(A arg) { ... } // overrides
 public A get() { ... } // overrides
}

The signatures and the return types are indentical - a classical example of overriding. The second type parameter B simply does not appear in the overriding
methods' signatures and is therefore irrelevant for overriding.

However, if we slightly change the subtype, our attempt to override the inherited methods goes wrong. We declare the subtype methods using the type parameter B
although we derive from the supertype instantiation on type parameter A.

Example (of a generic subtype without override-equivalent methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 public T get() { ... }
}
class Sub<A,B> extends Super<A> {
 ...
 public void set(B arg) { ... } // error: same erasure
 public B get() { ... } // error: incompatible return type
}

error: name clash: set(B) in Sub<A,B> and set(T) in Super<A> have the same erasure,
yet neither overrides the other
 class Sub<A,B> extends Super<A> {
 ^
error: get() in Sub cannot override get() in Super;
attempting to use incompatible return type
found : B
required: A
 public B get() { ... }

 ^

The set methods have signatures that are no longer override-equivalent, namely set($T1_extends_Object) in the supertype and set($T2_extends_Object) in the
subtype. This is because the compiler distinguishes between different type parameters. At the same time, both signatures have the identical erasures, namely
set(Object), and the compiler rejects the subtype method set with an error message because no two methods in the same type may have identical signatures.

The get methods have identical signatures, but incompatible return types. Again, because the compiler distinguishes between different type parameters. For this
reason the subtpye method get is rejected with an error message.

Let us modify the subtype a second type and see what happens now. The modification is that the second type parameter is bounded by the first type parameter.

Example (of a generic subtype without override-equivalent methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 public T get() { ... }
}
class Sub<A,B extends A> extends Super<A> {
 ...
 public void set(B arg) { ... } // error: same erasure
 public B get() { ... } // overrides
}

error: name clash: set(B) in Sub<A,B> and set(T) in Super<A> have the same erasure,
yet neither overrides the other
 class Sub<A,B extends A> extends Super<A> {
 ^

The set methods still have signatures that are not override-equivalent, namely set($T1_extends_Object) in the supertype and set($T2_extends_$T1) in the
subtype. And both signatures still have the same erasure, namely set(Object). Again, the compiler rejects the subtype method set with an error message.
The get methods have identical signatures and this time compatible return types, because the type parameter B is a subtype of the type parameter A. For this reason
the subtpye method get overrides the supertype method.

Let us consider a situation where the subtype's type parameter has different bounds than the supertype's type parameter.

Example (of a generic subtype with override-equivalent methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 public T get() { ... }
}

class Sub<N extends Number> extends Super<N> {
 ...
 public void set(N arg) { ... } // overrides
 public N get() { ... } // overrides
}

The signatures and the return types of the methods are identical in super and subclass, namely set($T1_extends_Number) with return type void and get() with
return type $T1_extends_Number.

Let us change the subtype declaration slightly; we declare subclass methods so that they use the bound in the method signatures instead of the type parameter .

Example (of a generic subtype with different yet override-equivalent methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 public T get() { ... }
}
class Sub<N extends Number> extends Super<N> {
 ...
 public void set(Number arg) { ... } // overrides
 public Number get() { ... } // error: incompatible return type
}

The set methods now have different signatures, namely set($T1_extends_Number) in the supertype and set(Number) in the subtype. Normally, this would be
overloading, but in this case with type parameters involved the signatures are considered override-equivalent. This is because the supertype's set method takes an
argument of type $T1_extends_Number, which is a placeholder for a subtype of Number. The subtype's set method takes an argument of type Number, which means
that any argument passed to the set method via a supertype reference is acceptable to the subtype version of the method.

Consider the example of a concrete parameterization of our super- and subtype in order to understand why it makes sense that the subtype version of the set
method is an overriding rather than an overloading version of the supertype method, despite of the different signature. For illustration we use Sub<Integer> and its
supertype Super<Integer>. The two methods involved in overriding are Super<Integer>.set(Integer) and Sub<Integer>.set(Number). When a supertype
reference refers to a subtype object and we invoke the set method through the supertype reference, then we see Super<Integer>.set(Integer), but actually invoke
the overriding Sub<Integer>.set(Number). Is it type-safe?

Example (of calling the overridden set method):

Super<Integer> ref = new Sub<Integer>();
ref.set(10); // calls Sub<Integer>.set(Number)

All we can pass to Super<Integer>.set(Integer) are objects of type Integer; they are handed over to Sub<Integer>.set(Number), which happily accepts the
Integer objects because they are subtypes of Number. And the same is true for all parameterizations of type Sub. because the declared argument type of the
supertype method is always a subtype of the declared argument type of the subtype method. Hence it is type-safe that the subtype version of the set method is
considered an overriding version of the supertype's set method.

The opposite is true for the get methods. They have identical signatures, but incompatible return types, namely $T1_extends_Number in the supertype and Number
in the subtype. If we invoked the subtype's set method via a supertype reference then we would expect a return value of type $T1_extends_Number, which is a

placeholder for a subtype of Number, while in fact the subtype method would return a Number reference, which can refer to any arbitrary subtype of Number, not
necessarily the one we are prepared to receive. Hence considering the subtype version of the get method an overriding version of the supertype's get method
would not be type-safe and is therefore rejected as an error.

In constrast, the following fairly similar example leads to an overloading situation.

Example (of a generic subtype without override-equivalent methods):

class Super<T> {
 ...
 public void set(T arg) { ... }
 public T get() { ... }
}
class Sub<N extends Number> extends Super<Number> {
 ...
 public void set(N arg) { ... } // overloads
 public N get() { ... } // overrides
}

The set methods again have different yet similar signatures. This time it is the other way round: we have set(Number) in the supertype and
set($T1_extends_Number) in the subtype. This is overlaoding rather than overriding, because the supertype method has a declared argument type that is a
supertype of the subtype method's declared argument type. Overriding would not be type-safe in this situation.

To understand it let us use the same concrete parameterization as above, namely Sub<Integer> and its supertype Super<Number>. The two methods in question are
Super<Number>.set(Number) and Sub<Integer>.set(Integer). When a supertype reference refers to a subtype object and we invoke the set method through the
supertype reference, then we see Super<Number>.set(Number), but would actually invoke Sub<Integer>.set(Integer), if this were overrding. This is not type-
safe because we could pass an object of type Long to Super<Number>.set(Number), but the subtype method Sub<Integer>.set(Integer) cannot take it.

The get methods are not problematic in this example. They have the identical signatures and covariant return type, namely Number in the supertype and
$T1_extends_Number in the subtype. Hence, we have overriding for the get methods.

Overloading leads to confusing and/or ambiguous method invocations. Consider for example the instantiation Sub<Number>. In this instantiation we have
Super<Number>.set(Number) in the supertype and overloaded version Sub<Number>.set(Number) in the subtype, both methods have the same signature.

Example (of calling the overloaded set method):

Integer integer = 10;
Number number = integer;

Sub<Number> ref = new Sub<Number>();
ref.set(integer); // error: ambiguous
ref.set(number); // error: ambiguous

error: reference to set is ambiguous,
both method set(T) in Super<Number> and method set(N) in Sub<Number> match
 ref.set(integer);

 ^
eror: reference to set is ambiguous,
both method set(T) in Super<Number> and method set(N) in Sub<Number> match
 ref.set(number);
 ^

The point to take notice of is that the set method in Sub<Number> does not override the set method inherited from Super<Number> although in this particular
instantiation both methods have the same argument type.

This is because the decision whether a subtype method overrides or overloads a supertype method is made by the compiler when it compiles the generic subtype. At
that point in time there is no knowledge regarding the concrete type by which the type parameter N might later be replaced. Based on the declaration of the generic
subtype the two set methods have different signatures, namely set(Number) in the supertype and set($T1_extends_Number) in the generic subtype. In a certain
instantiation of the subtype, namely in Sub<Number>, the type parameter N (or $T1_extends_Number) might be replaced by the concrete type Number. As a result
both set methods of Sub<Number> suddenly have the same arguments type. But that does not change the fact that the two methods still have different signatures
and therefore overload rather than override each other.

LINK TO THIS Technicalities.FAQ821

REFERENCES
What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is a subsignature?
What are override-equivalent signatures?
When does a method override its supertype's method?
What are covariant-return types?
What are substitutable return types?
Can a method of a non-generic subtype override a method of a generic supertype?
Why doesn't method overriding work as I expect it?

Can a generic method override a generic one?

Yes.

This FAQ entry discusses the relationship between generic methods in super- and subtypes with respect to overriding and overloading.

Say, we have a supertype with generic methods and we intend to override the generic methods in a subtype. Which subtype methods are considered overriding
versions of the the generic supertype methods? FAQ entry FAQ823 discusses which non-generic methods in a subtype override a generic method in a supertype. In
this FAQ entry we explore which generic subtype methods override generic methods in a supertype.

Example (of generic subtype methods overriding generic supertype methods):

class Super {

 public <T> void set(T arg) { ... }
 public <T> T get() { ... }
}
class Sub extends Super {
 public <S> void set(S arg) { ... } // overrides
 public <S> S get() { ... } // overrides
}

In this example the subtype methods are generic methods and have the same signatures as the supertype methods, namely
<$T1_extends_Object>set($T1_extends_Object) and <$T1_extends_Object>get(). Note, that the names of the type parameters of the generic methods differ
in the super- and the subtype. This, however, does not affect the signatures because the names of type parameters are irrelevant for the signature.

If the methods have type parameters with different bounds, then they do not override, because the methods have signatures that are not override-equivalent.
Remember, the type parameter bounds are part of a generic method's signature.

Example (of generic subtype methods overloading generic supertype methods; not recommended):

class Super {
 public <T> void set(T arg) { ... }
 public <T> T get() { ... }
}
class Sub extends Super {
 public <S extends Number> void set(S arg) { ... } // overloads
 public <S extends Number> S get() { ... } // overloads
}

In this example the subtype methods have the signatures <$T1_extends_Number>set($T1_extends_Number) and <$T1_extends_Number>get(), while the
supertype methods have the signatures <$T1_extends_Object>set($T1_extends_Object) and <$T1_extends_Object>get(). The signatures are clearly different
and there is no chance that the subtype methods can ever override the supertype methods. The resulting overload situation makes for "interesting" effects when the
methods are invoked; most of the time you will see the compiler complaining about ambiguous method calls. For this reason complex overloading situations like
the one above are generally best avoided.

Remember that the order of the type parameter bounds does not affect the signature of a generic method. For this reason, the methods in the following example do
override, although they have different type parameter bounds.

Example (of generic subtype methods overriding generic supertype methods):

class Super {
 public <T extends Comparable<T> & Serializable> void set(T arg) { ... }
 public <T extends Comparable<T> & Serializable> T get() { ... }
}
class Sub extends Super {
 public <S extends Serializable & Comparable<S>> void set(S arg) { ... } // overrides
 public <S extends Serializable & Comparable<S>> S get() { ... } // overrides
}

The respective methods have identical signatures because the order of the type parameter bounds is irrelevant.

LINK TO THIS Technicalities.FAQ822

REFERENCES What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is a subsignature?
What is overload resolution?
Can a generic method override a non-generic one?
What is overload resolution?
Why doesn't method overloading work as I expect it?

Can a non-generic method override a generic one?

Yes.

This FAQ entry discusses the relationship between generic and non-generic methods with respect to overloading.

Say, we have a supertype with generic methods and we intend to override the generic methods in a subtype. Which subtype methods are considered overriding
versions of the the generic supertype methods? Before we discuss non-generic subtype methods that override generic supertype methods, let us consider the more
obvious case of a subtype with generic methods that override generic methods from the supertype.

Example (of generic subtype methods overriding generic supertype methods):

class Super {
 public <T> void set(T arg) { ... }
 public <T> T get() { ... }
}
class Sub extends Super {
 public <S> void set(S arg) { ... } // overrides
 public <S> S get() { ... } // overrides
}

In this example the subtype methods are generic methods and have the same signatures as the supertype methods, namely
<$T1_extends_Object>set($T1_extends_Object) and <$T1_extends_Object>get(). Note, that the names of the type parameters of the generic methods differ
in the super- and the subtype. This, however, does not affect the signatures because the names of type parameters are irrelevant for the signature.

Now, let us explore an example where non-generic subtype methods override generic supertype methods. Non-generic subtype methods are considered overriding
versions of the generic supertype methods if the signatures' erasures are identical.

Example (of non-generic subtype methods overriding generic supertype methods):

class Super {
 public <T> void set(T arg) { ... }
 public <T> T get() { ... }
}
class Sub extends Super {
 public void set(Object arg) { ... } // overrides
 public Object get() { ... } // overrides with unchecked warning
}

warning: get() in Sub overrides <T>get() in Super;
return type requires unchecked conversion
found : Object
required: T
 public Object get() {
 ^

Here the subtype methods have signatures, namely set(Object) and get(), that are identical to the erasures of the supertype methods. These type-erased
signatures are considered override-equivalent.

There is one blemish in the case of the get method: we receive an unchecked warning because the return types are not really compatible. The return type of the
subtype method get is Object, the return type of the supertype method get is an unbounded type parameter. The subtype method's return type is neither identical
to the supertype method's return type nor is it a subtype thereof; in both situations the compiler would happily accept the return types as compatible. Instead, the
subtype method's return type Object is convertible to the supertype method's return type by means of an unchecked conversion. An unchecked warning indicates
that a type check is necessary that neither the compiler nor the virtual machine can perform. In other words, the unchecked operation is not type-safe. In case of the
convertible return types someone would have to make sure that the subtype method's return value is type-compatible to the supertype method's return type, but
nobody except the programmer can ensure this.

The main purpose of allowing that methods with erased signatures override methods with generic signatures is backward compatibility. Imagine both classes had
initially been non-generic legacy classes. In this initial situation both classes had had methods that take and return Object reference.

Example (of legacy classes):

class Super {
 public void set(Object arg) { ... }
 public Object get() { ... }
}
class Sub extends Super {
 public void set(Object arg) { ... } // overrides
 public Object get() { ... } // overrides
}

Later we decide to re-engineer the superclass and turn it into a class with generic methods.

Example (same as before, but after generification of the supertype):

class Super {
 public <T> void set(T arg) { ... }
 public <T> T get() { ... }
}
class Sub extends Super {
 publicvoid set(Object arg) { ... } // overrides ???
 public Object get() { ... } // overrides ???
}

Now the question is: do the subtype methods still override the generified supertype methods? The answer is: yes. This is because subtype methods whose
signatures are identical to the erasures of the supertype methods overload the supertype methods. That is, we can generify the supertype without affecting the
legacy subtypes.

At last, let us discuss a counter-example where the non-generic subtype methods do not override the generic supertype methods.

Example (of non-generic subtype method overloading, instead of overriding, generic supertype methods; not recommended):

class Super {
 public <T> void set(T arg) { ... }
 public <T> T get() { ... }
}
class Sub extends Super {
 public void set(String arg) { ... } // overloads
 public String get() { ... } // overrides with unchecked warning
}

warning: get() in Sub overrides <T>get() in Super;
return type requires unchecked conversion
found : String
required: T
 public String get() {
 ^

Here the subtype method set has the signature set(String) and this signature is not override-equivalent to the supertype method's signature
<$T1_extends_Object>set($T1_extends_Object). This is because the subtype method's signature is different from both the supertype method's signature and the
erasure thereof. As the subtype method set does not override, it overloads.

The subtype method get on the other hand overrides the supertype method get. This is because the subtype method's signature is identical to the erasure of the
supertype method's signature. The return types are not compatible, but only convertible by unchecked conversion; the subtype method's return type String is a
subtype of the erasure of the supertype method's return type. That is, the subtype method's return type is acceptable as a result of the combination of unchecked
conversion and covariance.

The entire subclass is an example of poor design. The combination of overloading and overriding of corresponding methods is confusing at best.

LINK TO THIS Technicalities.FAQ823

REFERENCES What is an unchecked warning?
What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is overload resolution?
Can a generic method override a generic one?
Can a generic method override a non-generic one?
Why doesn't method overloading work as I expect it?

Can a generic method override a non-generic one?

No.

This FAQ entry discusses whether a generic method in a subtype can override an non-generic method inherited from a supertype. We have seen in FAQ823 that the
converse is possible, namely that a regular, non-generic method in a subtype can override a generic method inherited from a supertype. It raises the question
whether the same is true if the roles are flipped and a generic method in a subtype attempts to override a non-generic method from a supertype.

The answer is: No, generic methods in a subtype cannot override non-generic methods in a supertype. Generic subtype methods can only overload non-generic
supertype methods.

Let us consider a superclass with non-generic methods and let us explore why generic methods in subtypes do not override the non-generic supertype methods.

Example (of a supertype with non-generic methods and a subtype with generic methods):

class Super {
 public void set(Object arg) { ... }
 public Object get() { ... }
}
class Sub extends Super {
 public <S> void set(S arg) { ... } // error
 public <S> S get() { ... } // error
}

error: name clash: <S>set(S) in Sub and set(Object) in Super have the same erasure,
yet neither overrides the other
class Sub extends Super {
^
error: name clash: <S>get() in Sub and get() in Super have the same erasure,
yet neither overrides the other
class Sub extends Super {
^

Although the erasures of the subtype methods have signatures that are identical to the supertype methods' signatures the respective signatures are not override-
equivalent. The override-equivalence only holds when the subtype method's signature is identical to the erasure of the supertype method's signature, but not vice
versa. Consequently, the subtype methods overload, instead of override, the supertype methods. Moreover, the fact that the erasures of corresponding methods in
super- and subtype are identical is in conflict with the rule that a class (the subclass in this case) must not have methods with identical erasures. As a result the
compiler issues error messages.

Let us consider a slightly different subtype, where again overloading is mixed up with overriding.

Example (of a supertype with non-generic methods and a subtype with generic methods; not recommended):

class Super {
 public void set(Object arg) { ... }
 public Object get() { ... }
}
class Sub extends Super {
 public <S extends Number> void set(S arg) { ... } // overloads
 public <S extends Number> S get() { ... } // overloads
}

This subclass compiles, but it does not show an example of overriding, but instead of overloading. This is because the supertype methods have the signatures
set(Object) and get(), while the subtype methods have the signatures <$T1_extends_Number>set($T1_extends_Number) and <$T1_extends_Number>get(). In
this example, not even the erasures of the signatures are identical, so that there is not the slightest chance that the subtype methods could override the supertype
methods. Instead, the subtype methods overload the supertype methods. What happens when we invoke the overloaded methods?

Example (of invoking the overloaded methods):

Sub sub = new Sub();
Super sup = sub;

sup.set("abc"); // calls Super.set(Object)
sup.set(0); // calls Super.set(Object)
Object o = sup.get(); // calls Super.get()

sub.set("abc"); // calls Super.set(Object)
sub.set(0); // calls Sub.<Integer>set(Integer)
Integer i = sub.get(); // error: ambiguous

error: reference to get is ambiguous,
both method get() in Super and method <S>get() in Sub match
Integer i = sub.get();
 ^

The invocation through a supertype reference leads to calls to the supertype versions of the overloaded method, regardless of the dynamic type of the referenced
object. This is the behavior that is expected of overloaded methods.
The invocation through a subtype reference leads to a call to the subtype versions of the overloaded set method, provided the argument is of a subtype of Number,
and to invocation of the supertype version of the method otherwise. Invocation of the overloaded get method through a subtype reference leads to an error message.

Let us see how that happens.

When the set method is invoked with a String argument, then the compiler finds only one viable method, namely the non-generic set(Object)method from the
supertype. The generic subtype method is not a candidate for this invocation because String is no subtype of Number and hence the possible type argument String
is not within bounds. Consequently, the supertype method is called.

When the set method is invoked with a Integer argument, then the compiler finds two candidates for the invocation of the set method: the non-generic
set(Object)method from the supertype and the parametrization <Integer>set(Integer) inferred from the generic subtype. Note, the compiler performs type
argument inference before is looks for the best match among the candidate methods. Since the parametrization is the better match, the subtype method is invoked.

For the invocation of the get method, the compiler finds two candidates: get() from the supertype and <$T1_extends_Number>get() from the subtype. Neither of
the two signatures is more specific and thus the compiler reports an error. Note, the compiler does not consider the return type when it resolves the overloading and
in particular does not perform type inference based on a generic method's return type. In our example it means that the compiler does not infer from the calling
context that the instantiation <Integer>get() would be a viable candidate method and then picks it as the better match. Only the signature, and never the return
type, of a method are relevant for overload resolution.

The overload resolution is slightly different, when explicit instantiations are invoked.

Example (of invoking the overloaded methods with explicitly specified type arguments):

Sub sub = new Sub();
Super sup = sub;

Integer n = sub.<Integer>get(); // calls Sub.<Integer>set(Integer)
sub.<Integer>set(0); // calls Sub.<Integer>get()

In this situation the candidate set contains only the respective generic subtype method, because the supertype methods are not generic and for this reason cannot be
invoked with explicitly specified type arguments.

As the examples demonstrate, there is no way that a generic subtype method can override a non-generic supertype method. Instead, generic subtype methods
overload non-generic supertype methods. Such overloading should generally be avoided because it is confusing and hard to understand.

LINK TO THIS Technicalities.FAQ824

REFERENCES What is type argument inference?
What is method overriding?
What is method overloading?
What is the @Override annotation?
What is a method signature?
What is overload resolution?
Can a generic method override a generic one?
Can a non-generic method override a generic one?
Can a generic method override a non-generic one?
What is overload resolution?
Why doesn't method overloading work as I expect it?

What is overload resolution?

The process of determining the best match from a set of overloaded methods.

When a type has several overloaded methods, then the compiler must decide which method to call when it finds a method invocation expression. The process of
picking the best match from the set of candidate methods is called overload-resolution.

Example (of method overloading):

class Super {
 public void method(String arg) { ... }
 public void method(StringBuffer arg) { ... } // overloads
}
class Sub extends Super {
 public void method(StringBuilder arg) { ... } // overloads
}

In this example, all three versions of the method overload each other because they have the same name but different argument types. When the method is invoked
the compiler picks the best match from the three available candidates. The compiler takes a look at the type of the argument provided to the method call and tries to
find a method in the candidate set that accepts this particular type of argument.

Example (of overload resolution):

Sub ref = new Sub();

ref.method("ABC"); // calls Super.method(String)
ref.method(new StringBuilder("ABC")); // calls Sub.method(StringBuilder)

In the first method call a String is provided and consequently the compiler invokes the method that takes a String argument. When a StringBuilder is provided
the method with the StringBuilder argument type is the best match. In both cases there is an exact match. This is not always so.

When there is no exact match the compiler considers various conversions, among them the conversion from a subtype to a supertype (called reference-widening),
conversions among primitive types (e.g. int to long), autoboxing and unboxing (e.g. int to Integer), and the conversion from a parameterized type to the raw
type (called unchecked conversion). By and large, overload resolution is a complex process and can lead to surprising results, in the sense that the compiler picks
and invokes a method that nobody had expected would be called.

This sounds harmless, but can be a serious problem. For instance, when an overloading method is added to an existing class, then this additional candidate can
change the result of overload resolution and thereby inadvertantly change the effect of method invocations in an unrelated part of the program. This is usually
undesired and the resulting bugs are difficult to track down, because symptom and source of the problem are mostly unrelated.

As a general rule, overloading should be used sparingly and judiciously.

LINK TO THIS Technicalities.FAQ830

REFERENCES
What is method overloading?
What is the @Override annotation?

What is a method signature?
What is a subsignature?
What are override-equivalent signatures?
Why doesn't method overriding work as I expect it?

CONTENT PREVIOUS NEXT INDEX

More Information on Java Generics
© Copyright 2004-2014 by Angelika Langer. All Rights Reserved.

Where can I find a generics tutorial?
Where can I find a specification of the Java generics language features?
Which books cover Java generics?
What webpages are devoted to Java generics?

Where can I find a generics tutorial?

TUTORIAL: http://docs.oracle.com/javase/tutorial/extra/generics/index.html
andhttp://docs.oracle.com/javase/tutorial/java/generics/

A tutorial for Java Generics written by Gilad Bracha was published in February 2004 and later extended.

LINK TO THIS Information.FAQ002

REFERENCES

Where can I find a specification of the Java generics language features?

SPECIFICATION: http://jcp.org/aboutJava/communityprocess/review/jsr014/

The public review draft of the Java Generics specification has been put together by the JSR014 specification
group. Sadly, it's outdated (August 2001) and no revision has been published here. Later versions of the
specification were available as part of the prototype releases of the compiler. However, there is no final release
of the specification.

SPECIFICATION: http://java.sun.com/docs/books/jls/

The final specification is part of the 3rd edition of the Java Language Specification (JLS 3), which has been
published in April 2005 and is available at the URL above.

LINK TO THIS Information.FAQ003

REFERENCES

Which books cover Java generics?

None that I know of. A couple of books give an introduction and overview, but non covers Java generics in
depth.

There is a book that covers generics and the collections framework.

Generics and Collections in Java 5
Maurice Naftalin and Philip Wadler
O'Reilly & Associates, November 2006

Some books are devoted to all the new features in Java 5.0, including Java generics.

http://docs.oracle.com/javase/tutorial/extra/generics/index.html
http://docs.oracle.com/javase/tutorial/java/generics/index.html
http://jcp.org/aboutJava/communityprocess/review/jsr014/
http://jcp.org/en/jsr/detail?id=14
http://jcp.org/en/jsr/detail?id=14
http://java.sun.com/docs/books/jls/

Java 1.5 Tiger
Brett McLaughlin and David Flanagan
O'Reilly & Associates, June 2004

Some Java textbooks have been updated to include Java generics. Examples are:

Core Java, Volume I - Fundamentals, 7th Edition
Cay Horstmann and Gary Cornell
Prentice Hall, August 2004

Thinking in Java, 4th Edition
Bruce Eckel
Prentice Hall PTR, February 2006

LINK TO THIS Information.FAQ004

REFERENCES

What webpages are devoted to Java generics?

LINKS: http://en.wikipedia.org/wiki/Generics_in_Java

The Wikipedia entry provides some rough explanations and a couple of links to other websites related to Java
Generics.

LINK TO THIS Information.FAQ005

REFERENCES

CONTENT PREVIOUS NEXT INDEX

http://en.wikipedia.org/wiki/Generics_in_Java

Glossary
© Copyright 2004-2014 by Angelika Langer. All Rights Reserved.

In this glossary links of the form XXX.FAQnnn refer to an entry in this FAQ, link of the form JLS n.n.n refer to a
paragraph in JLS3, the Java Language Specification, 3rd Edition, and links of the form J2SE API package.class.method refer
to an entry in the Java platform libraries' API documentation.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

B

bounded type parameter

A type parameter with one or more bounds. The type parameter bounds restrict the set of types that can be
used as type arguments and give access to the methods defined by the bounds.

Example:

public class TreeMap<Key extends Comparable<Key>,Data>{
 private static class Entry<K,V> { ... }
 ...
 private Entry<Key,Data> getEntry(Key key) {
 ...key.compareTo(p.key) ...
 }
}

see also: TypeParameters.FAQ002, JLS 4.4

bounded wildcard

A wildcard with either an upper or a lower bound.
Example:

public class Collections {
 public static <T> void copy
 (List<? super T> dest, List<? extends T> src) { // bounded wildcard
parameterized types
 for (int i=0; i<src.size(); i++)
 dest.set(i,src.get(i));
 }
}

see also: TypeArguments.FAQ103, JLS 4.5.1

bridge method

A synthetic method that the compiler generates in the course of type erasure. It is sometimes needed when a
type extends or implements a parameterized class or interface.

Example (before type erasure):

interface Comparable<A> {
 public int compareTo(A that);
}
final class NumericValue implements Comparable<NumericValue> {
 ...

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://java.sun.com/docs/books/jls/
http://java.sun.com/j2se/1.5.0/docs/api/
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

 public int compareTo(NumericValue that) { return this.value - that.value; }

}

Example (after type erasure):

interface Comparable {
 public int compareTo(Object that);
}
final class NumericValue implements Comparable {
 ...
 public int compareTo(NumericValue that) { return this.value - that.value;
}
 public int compareTo(Object that) { return
this.compareTo((NumericValue)that); } // bridge method
}

see also: TechnicalDetails.FAQ102

C

checked collection
A view to a regular collection that performs a runtime type check each time an element is inserted.

Example:

List<String> stringList
 = Collections.checkedList(new ArrayList<String>(),String.class);

see also: ProgrammingIdioms.FAQ004, J2SE API java.util.Collection.checkedCollection

class literal

A literal of type Class. A class literal is an expression consisting of the name of a class, interface, array, or
primitive type, or the pseudo-type void , followed by the suffix ".class".

Example:

if (s.getClass() == String.class) ...

see also: JLS 15.8.2

code sharing
A translation technique for generics where the compiler generates code for only one representation of a
generic type or method and maps all the instantiations of the generic type or method to the unique
representation, performing type checks and type conversions where needed.

see also: TechnicalDetails.FAQ100

code specialization

A translation technique for generics where the compiler generates code for only one representation of a
generic type or method and maps all the instantiations of the generic type or method to the unique
representation, performing type checks and type conversions where needed.

see also: TechnicalDetails.FAQ100

concrete instantiation

see: concrete parameterized type
concrete parameterized type

An instantiation of a generic type where all type arguments are concrete types rather than wildcards.

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html#checkedCollection%28java.util.Collection,%20java.lang.Class%29

Examples:
List<String>
Map<String,Date>

but not:
List<? extends Number>
Map<String,?>

Synonyms: concrete instantiation

see also: ParameterizedTypes.FAQ101

D

diamond operator

The empty angle brackets <> that trigger type inference in new-expressions.

Example:

List<String> list = new ArrayList<>();

see also: TechnicalDetails.FAQ400A

E

enum type

A reference type that defines a finite number of enum constants, where each enum constant defines an
instance of the enum type.

Example:

enum Season { SPRING, SUMMER, AUTUMN, WINTER }

see also: JLS 8.9

explicit type argument specification

Providing a type argument list when a generic method is invoked rather than relying on type inference.

Example:

public class Utilities {
 public static <T extends Comparable> T max(T arg1, T arg2) { ... }
}
public class Test {
 public static void main(String[] args) {
 System.out.println(Utilities.<String>max("abc","xyz"));
 }
}

Similarly for the type argument of a generic type; it can be explicitly specified, which is the norm, or
deduced via type inference.

List<String> list1 = new ArrayList<String>();

see also: TechnicalDetails.FAQ402, JLS15.12

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

F

G

generic type

A class or interface with one or more type parameters.

Examples:

class List<E> { ... }
interface Comparable<T> { ... }
interface Map<K,V> { ... }

Synonyms: parameterized type
Most authors use the term parameterized type as a synonym for an instantiation or an invocation
of a generic type. Some (few) authors use the term parameterized type as a synonym for generic
type.

see also: GenericTypes.FAQ001, JLS 8.1.2

generic method

A method with one or more type parameters.

Examples:

<T> void set(T arg) { ... }
<T> T[] toArray(T[] array) { ... }

see also: GenericMethods.FAQ001, JLS 8.4.4

generification
Converting a legacy (non-generic) class or interface to be a generic one.

Examples: Classes (e.g., List) of the Collections framework in Java 1.4 have been generified (e.g.,
List<T>) in Java 5.0.
see also: generic type

H

heap pollution

A situation where a variable of a parameterized type refers to an object that is not of that parameterized type.
Examples:

List ln = new ArrayList<Number>();
List<String> ls =ln; // unchecked warning + heap pollution

List<? extends Number> ln = new ArrayList<Long>();
List<Short> ls = (List<Short>) ln; // unchecked warning + heap pollution

see also: TechnicalDetails.FAQ050, JLS 4.12.2.1

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

I

instantiated method

A method created from a generic method by providing an actual type argument per formal type
parameter. It is the result of either type argument inference or explicit type argument specification.

Example:

List<Number> list = new ArrayList<Number>();
Object[] numbers2 = list.toArray(new Long[0]); // calls method
<Long>toArray
Object[] numbers1 = list.<Number>toArray(new Long[0]); // calls method
<Number>toArray

In line 1 an instantiated method with the signature Long[] toArray(Long[]) is created
from the generic method <T> T[] toArray(T[] a) by replacing the formal type
parameter T with the inferred actual type argument Long.
In line 2 an instantiated method with the signature Number[] toArray(Number[]) is
created from the generic method <T> T[] toArray(T[] a) by replacing the formal type
parameter T with the explicitly-specified actual type argument Number.

see also: TechnicalDetails.FAQ401, TechnicalDetails.FAQ402

instantiated type

A type created from a generic type by providing an actual type argument per formal type parameter.

Examples:

List<String> (created from the generic type List<E>)
Map<String,Date> (created from the generic type Map<K,V>)

Synonyms: instantiation, parameterized type, invocation
Most authors use the terms instantiation (short for: instantiated type) or parameterized type. The
JLS and other documents by Sun Microsystems use the terms invocation and parameterized
type.

see also: GenericTypes.FAQ001, JLS 8.1.2

invocation

A type created from a generic type by providing an actual type argument per formal type parameter.
Used to denote both the process of creating a type from a generic type or method as well as the result
of that process.

Examples:

List<String> (created from the generic type List<E>)
Map<String,Date> (created from the generic type Map<K,V>)

Synonyms: parameterized type, instantiation, instantiated type
The JLS and other documents by Sun Microsystems use the term invocation for the process and
result of creating a type from a generic type by replacing formal type parameters by actual type
arguments. The JLS uses the term parameterized type as a synonym for the resulting type. Most
authors use the term instantiation. This FAQ prefers the terms parameterized type and
instantiation over invocation.

Other Meanings:
The term invocation is also used in conjunction with methods and means calling a method.

see also: GenericTypes.FAQ001, JLS 8.1.2

instantiation

A type created from a generic type or a generic method by providing an actual type argument per
formal type parameter. Used to denote both the process of creating a type or method from a generic
type or method as well as the result of that process.

Examples:

List<String> (created from the generic type List<E>)
Map<String,Date> (created from the generic type Map<K,V>)
Collections.<Number>toArray (created from the generic method <T> T[]
Collections.toArray(T[]))

Synonyms: parameterized type, invocation
Most authors use the term instantiation. The JLS and other documents by Sun Microsystems use
the term invocation for the process and result of creating a type from a generic type by replacing
formal type parameters by actual type arguments. The JLS uses the term parameterized type as a
synonym for the resulting type. The JLS has no term for the result of creating a method from a
generic method.

Other Meanings:
The term instantiation is also used to denote the creation of an instance (or object) of a type.

see also: GenericTypes.FAQ001, JLS 8.1.2

J

K

L

lower bound

see: lower wildcard bound

lower wildcard bound

A reference type that is used to further describe a wildcard; it denotes the family of types that are supertypes
of the lower bound.

Example:

Comparable<? super Long>
see also: TypeArguments.FAQ201, JLS 4.5.1

M

N

O

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

P

parameterized type

A type created from a generic type by providing an actual type argument per formal type parameter.

Examples:

List<String> (created from the generic type List<E>)
Map<String,Date> (created from the generic type Map<K,V>)

Synonyms: invocation, instantiation, instantiated type
One of the most blurred terms in the area of generics. The JLS uses the term parameterized type
for the result of replacing formal type parameters by actual type arguments; it is a synonym for
an invocation of a generic type.
Other authors use the term instantiation or instantiated type instead. Few authors equate
parameterized type with generic type.
This FAQ favors the terms parameterized type and instantiation of a generic type.

see also: GenericTypes.FAQ001, JLS 8.1.2

Q

R

raw type

A (non-generic) type created from a generic type by omitting the type parameters
("de-generification").

Examples:

List (created from the generic type List<E>)
Map (created from the generic type Map<K,V>)

see also: GenericTypes.FAQ201, JLS 4.8

reification

Representing type parameters and arguments of generic types and methods at runtime. Reification is the
opposite of type erasure.

see also: TechnicalDetails.FAQ101A

reifiable type

A type whose type information is fully available at runtime, that is, a type that does not lose
information in the course of type erasure.

Examples:

int
Number
List<?>
List

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

Pair<?,?>[]
but not:

List<String>
List<? extends Number>

see also: TechnicalDetails.FAQ106, JLS 4.7

S

SuppressWarnings annotation

A standard annotation that suppresses warnings for the annotated part (e.g., method, field, class, ... etc.)
of the program.

Example:

@SuppressWarnings(value={"unchecked","deprecation"})
public static void someMethod() {
 ...
 TreeSet set = new TreeSet();
 set.add(new Date(104,8,11)); // unchecked and deprecation warning
suppressed
 ...
}

see also: TechnicalDetails.FAQ004, JLS 9.6.1.5

T

type argument

A reference type or a wildcard that is used for instantiation / invocation of a generic type or a
reference type used for instantiation / invocation of a generic method.

Example:

List<?> list = new LinkedList<String>();

see also: TypeArguments.FAQ001, JLS 4.5.1

type inference

The automatic deduction of the type arguments of a generic method or generic type.

Example:

class Collections {
 public static <A extends Comparable<? super A>> A max (Collection<A> xs)
{ ... }
}

LinkedList<Long> list = new LinkedList<>(); // 1
Long y = Collections.max(list); // 2

In line 1 the compiler infers the missing type argument (Long) from the lefthand side of
the assignment; in line 2 it infers that the method type argument must be Long from the
method argument's type.

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

see also: TechnicalDetails.html.FAQ400, TechnicalDetails.html.FAQ400A, TechnicalDetails.html.FAQ401, JLS 15.12.2.7

type erasure

The process that maps generic types and generic methods and their instantiations / invocations to their
unique bytecode representation by eliding type parameters and type arguments.

Example:

before type erasure: public static <A extends Comparable<? super A>> A max
(Collection<A> xs) { ... }

after type erasure: public static Comparable max (Collection xs) { ... }

see also: TechnicalDetails.FAQ101, JLS 4.6

type parameter

A place holder for a type argument. Each type parameter is replaced by a type argument when
a generic type or generic method is instantiated / invoked.

Example:

interface Comparable<E> {
 int compareTo(E other);
}

Synonyms: type variable
The Language Specification uses the terms type parameter and type variable as synonyms. Other
authors sometimes use the term generic parameter as a synonym for type parameter.

see also: TypeParameters.FAQ001, JLS 4.4

type parameter bound

A reference type that is used to further describe a type parameter. It restricts the set of types that can
be used as type arguments and gives access to the non-static methods that it defines.

Examples:

class Enum<E extends Enum<E>> { ... }
<T extends Comparable<? super T>> void sort(List<T> list) { ... }

see also: TypeParameters.FAQ101, JLS 4.4

type safety

A program is considered type-safe if the entire program compiles without errors and warnings and
does not raise any unexpected ClassCastExceptions at runtime.

see also: Fundamentals.FAQ004

type variable

A place holder for a type argument . Each type parameter is replaced by a type argument when
a parameterized type or an instantiated method are created.

Example:

interface Comparable<E> {
 int compareTo(E other);
}

Synonyms: type parameter
The Java Language Specification uses the terms type parameter and type variable as synonyms.

see also: TypeParameters.FAQ001, JLS 4.4

U

unbounded wildcard

A wildcard without a bound. Basically it is the "?" wildcard.

Example:

Pair<?,String>

see also: TypeArguments.FAQ102, JLS 4.5.1

unbounded wildcard instantiation

see: unbounded wildcard parameterized type

unbounded wildcard parameterized type

A parameterized type in which all type arguments are unbounded wildcards.

Examples:

Pair<?,?>
Map<?,?>

but not:
Pair<? extends Number,? extends Number>
Map<String,?>

Synonyms: unbounded wildcard instantiation

see also: GenericTypes.FAQ302

unchecked warning
A warning by which the compiler indicates that it cannot ensure type safety.

Example:

TreeSet set = new TreeSet();
set.add("abc"); // unchecked warning

warning: [unchecked] unchecked call to add(E) as a member of the raw type
java.util.TreeSet
 set.add("abc");
 ^

see also: TechnicalDetails.FAQ001

upper bound

see: upper wildcard bound

upper wildcard bound

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

A reference type that is used to further describe a wildcard; it denotes the family of types that are subtypes of
the upper bound.

Examples:

List<? extends String>
List<? extends Thread.State>
List<? extends int[]>
List<? extends Callable<String>>
List<? extends Comparable<? super Long>>

see also: TypeArguments.FAQ201, JLS 4.5.1

V

varargs warning

A warning by which the compiler indicates that methods with a variable argument list can lead to heap
pollution.

Example:

public static <E> void addAll(List<E> list, E... array) { // varargs warning
 for (E element : array) list.add(element);
}

warning: [varargs] Possible heap pollution from parameterized vararg type E
 public static <E> void addAll(List<E> list, E... array) {
 ^

see also: Practicalities.FAQ300A

W

wildcard

A syntactic construct that denotes a family of types.

Examples:

?
? extends Number
? super Number

see also: TypeArguments.FAQ101, JLS 4.5.1

wildcard bound
A reference type that is used to further describe the family of types denoted by a wildcard.

Examples:

List<? super String>
List<? extends int[]>
List<? extends Callable<String>>
List<? extends >

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

Comparable<? super Long>

see also: TypeArguments.FAQ201, JLS 4.5.1

wildcard capture

An anonymous type parameter that represents the particular unknown type that the wildcard stands for. The
compiler uses the capture internally for evaluation of expressions, and the term "capture of ?" occasionally
shows up in error messages.

see also: TechnicalDetails.FAQ501

wildcard instantiation

see: wildcard parameterized type

wildcard parameterized type

A parameterized type where at least one type argument is a wildcard (as opposed to a concrete type).

Examples:

Collection<?>
List<? extends Number>
Comparator<? super String>
Pair<String,?>

see also: GenericTypes.FAQ301, JLS 4.5.1

X

Y

Z

CONTENT PREVIOUS

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

Index
© Copyright 2004-2022 by Angelika Langer. All Rights Reserved.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

actual type:
 in reflection, see reflective actual type

annotation:
 Override, see Override annotation
 SuppressWarnings, see SuppressWarnings annotation

array:
 component type, see array component type
 generic creation
 reference variable, see array reference variable

array reference variable:
 to array of concrete parameterized type
 to array of bounded wildcard parameterizedtype
 to array of unbounded wildcard parameterizedtype

array component type:
 concrete parameterized type
 wildcard parameterized type
 type parameter/variable
 unbounded wildcard parameterized type

B

bound:

, see lower bound
 of type parameter, see type parameter bounds
 of wildcard, see wildcard bound
 upper, see upper bound

bounded:
 type parameter
 wildcard

bridge method:
 performance penalty, see performance
 purpose
 what is ...?

C

cast:

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

 compiler-generated
 performance penalty, see performance
 target type
 to parameterized type
 to type parameter

checked collection
Class :
 type parameter

circular generic type, see self-referential generic type

class literal:

 of parameterized type
 of wildcard parameterized type
 of type parameter / variable
 what is ...?

clone :
 of generic type

code sharing, see compilation

code specialization, see compilation

collection:
 Collection<Object>
 Collection<?>
 checked
 generic, see generic collection
 mixed, see collection of objects of different types
of objects of different types
 parameterized, see parameterized collection

compatibility:
 binary

compilation of generics
 how does the compiler translate generics

compiler-generated:
 bridge method, see bridge method
 cast

concrete:
 instantiation, see concrete parameterized type
 parameterized type, see concrete parameterized type
concrete parameterized type:
 array of
 class literal
 compatibility
 of generic type
 use of
 vs. unbounded wildcard instantiation
 vs. wildcard instantiation
 what is ...?

covariant return type

 vs. covariant return type
 and overriding
 what is ...?

D

declared type:
 in reflection, see reflective declared type

derivation:
 from wildcard parameterized type
 from type parameter

descriptor
 vs. signature

diamond operator
 what is ...?

dynamic type
 in reflection, see reflective actual type

E

enum type:
 decryption of Enum<E extends Enum<E>>
 nested into generic type, see nested enum type
 generic

equals :
 of generic / parameterized type

erasure, see type erasure

exception handling:
 parameterized types

explicit type argument specification

extends keyword
 meaning of
 see also upper bound

F

features:
 see language features

G

generic:

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

 array, see java.lang.reflect.GenericArrayType
 code, see generic code
 collection, see generic collection
 exceptions
 interface, see generic interface
 method, see generic method
 type, see generic type

GenericArrayType, see java.lang.reflect.GenericArrayType

generic code:
 mix with legacy code

generic collection
 vs. non-generic collection

generic interface:
 as bound of a type parameter
 implementing different instantiations
 in class hierarchy
 name collision

generic method:
 explicit type argument specification
 definition
 invocation
 reflection, see reflective generic method
 type argument inference
 vs. regular method
 what is ...?

generic type:
 as type parameter bound
 cast to
 definition
 enum type
 exception handling
 instantiation
 nested interface
 reflection, see reflective generic type
 runtime type of
 static member, see static member of generic type
 super-subtype relationship
 type system
 vs. raw type
 vs. regular type
 what is ...?

generics, see Java generics

generification:
 of legacy classes

getThis trick

H

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

heap pollution

I

import:
 generic type
 parameterized type

improved type inference, see type argument inference

inference, see type argument inference

instanceof:
 target type

instantiation:
 concrete instantiation
 of generic method
 of generic type
 super-subtype relationship
 type relationship among instantiations of different generic types
 type relationship to lower bound wildcard instantiation
 type relationship to raw type
 type relationship to unbounded wildcard instantiation
 type relationship to upper bound wildcard instantiation
 wildcard instantiation
 vs. raw type

interface:
 nested into generic type, see nested interface
 generic, see generic interface

J

Java generics:
 benefit
 purpose
 translation by type erasure
 what are ...?

java.lang.reflect.GenericArrayType
 see also: JavaDoc

java.lang.reflect.ParameterizedType
 see also: JavaDoc

java.lang.reflect.Type
 subtypes
 see also: JavaDoc

java.lang.reflect.TypeVariable
 see also: JavaDoc

java.lang.reflect.WildcardType
 see also: JavaDoc

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/GenericArrayType.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/ParameterizedType.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Type.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/TypeVariable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/WildcardType.html

K

L

language features:
 bridge method
 concrete instantiation
 explicit type argument specification
 instantiation of generic method
 instantiation of generic type
 overview
 generic method
 generic type
 parameterized type
 raw type
 type argument
 type argument inference
 type erasure
 type parameter
 type parameter bound
 wildcard
 wildcard bound
 wildcard capture
 wildcard instantiation

legacy code:
generify
 mix with generic code
 re-engineer, see generify

lower bound:
 what is ...?
 on wildcard
 wildcard instantiation, see lower bound wildcard instantiation
 on type parameter
 difference on wildcard and on type parameter

lower bound wildcard instantiation:
 type relationship to other instantiations of the same type

M

method:
 bridge, see bridge method
 descriptor, see descriptor
 generic, see generic method
 parameterized, see generic method
 signature, see signature
 synthetic, see bridge method
 with wildcard return type
 with wildcard argument type
 with multi-level wildcard argument type

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

 with varargs, see variable argument list

multi-level wildcard
 as argument type of a method
 what is ...?

N

nested enum type (with parameterized enclosing type):
 scope name

nested interface (with parameterized enclosing type):
 scope name
 access to enclosing type parameters

non-reifiable type:
 and arrays
 and varargs
 vs. reifiable type

O

object:
 generic creation
 of concrete parameterized type
 of wildcard parameterized type
 of type parameter/variable
 of unbounded wildcard parameterized type

overloading:
 problems with
 what is ...?

overload resolution:
 and type variables
 what is ...?

Override annotation

override-equivalent signature:
 and overloading
 and overriding
 vs. subsignature
 what is ...?

overriding:
 generic sub-method + generic super-method
 generic sub-method - non-generic super-method
 generic subtype + generic supertype
 non-generic sub-method + generic super-method
 non-generic subtype + generic supertype
 problems with
 what is ...?

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

P

parameterized:
 collection, see parameterized collection
 interface, see parameterized interface
 method, see generic method
 type, see parameterized type

parameterized collection
 vs. non-parameterized collection

parameterized interface:
 as bound of a type parameter
 implementing different instantiations
 in class hierarchy
 name collision

ParameterizedType, see java.lang.reflect.ParameterizedType

parameterized type:
 as type parameter bound
 cast to
 definition
 enum type
 exception handling
 instantiation
 nested interface
 reflection, see reflective parameterized type
 runtime type of
 static member, see static member of parameterized type
 super-subtype relationship
 type system
 vs. raw type
 vs. regular type
 what is ...?

performance
polluted heap:
 see heap pollution

polymorphic method dispatch:
 and overriding

primitive types:
 as type arguments

Q

R

raw type:
 purpose
 type relationship to instantiation
 use of

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

 vs. parameterized type
 vs. unbounded wildcard instantiation
 what is ...?

recursive
 bound, see self-referential generic type
 generic type, see self-referential generic type
 type parameter, see self-referential generic type

reifiable type:
 vs. non-reifiable type
 what is ...?

reification

reflection:
 and generics

reflective ...
actual type
declared type
 dynamic type, see reflective actual type
 generic method, see reflective generic method
 generic type, see reflective generic type
 parameterized type, see reflective parameterized type
 static type, see reflective declared type
 type parameter, see reflective type parameter
 wildcard type, see reflective wildcard type

reflective generic method

reflective generic type
 difference to reflective parameterized type

reflective parameterized type
 difference to reflective generic type

reflective type parameter

reflective wildcard type

return type:
 covariant, see covariant return type
 substitutable, see substitutable return type

runtime type:
 class literal
 information
 of parameterized type

S

safety, see type safety

self-referential generic type

signature

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

 and overloading
 and overriding
 override-equivalent, see override-equivalent signature
 subsignature, see subsignature
 what is ...?

static:
 member, see static member of generic type
 type, see static type in reflection

static type
 in reflection, see reflective declared type

static member of generic type
 how many instances?
 name of
 type parameter as type of
subsignature
 and overloading
 and overriding
 vs. override-equivalent signature
 what is ...?

substitutable return type:
 vs. covariant return type
 and overriding
 what is ...?

super keyword
 see lower bound

super-subset
 relationship among type families denoted by wildcards

super-subtype
 relationship among instantiations of generic types

SuppressWarnings annotation

T

throws clause:
 and overriding, see conflicting
 and type parameter
conflicting

Type, see java.lang.reflect.Type

type:
 argument, see type argument
 check, see type check
 generic, see generic type
 parameter, see type parameter
 parameterized, see parameterized type
 raw type
 reifiable, see reifiable type
 runtime type

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

type argument:
 and type parameter bounds
 explicit type argument specification
 inference, see type argument inference
 of generic method
 of parameterized type
 permitted types
 primitive types
 type parameters
 what is ...?
 wildcards

type check:
 in checked collection, see checked collection
 in equals method, see equals
 implicitly generated
 leading to unchecked warning
 target type is a parameterized type
 target type is a type parameter:
 performed at compile time
 performed at runtime time
 see also, cast

type argument inference:
 explicit type argument specification
 for generic methods
 for instance creation
 from context
 what is ...?
 see also, diamond operator

type erasure:
 bridge method, see bridge method
 compiler-generated cast
 of generic method
 of parameterized type
 of type parameter
 reifiable type, see reifiable type
 several bounds
 what is ...?

type parameter:
 array of
 as bound of another type parameter
 as part of its own bounds
 as supertype
 as target type of runtime type check
 as type argument
 bounded
 bounds, see type parameter bounds
 cast to
 class literal
 derive from
 in catch clause
 in exception handling
 in throw statement

 in throws clause
 object of
 of an outer type
 reflection, see reflective type parameter
 scope of
 static context
 type-like use
 use of
 what is ...?

type parameter bound
 access to members
 and type arguments
 different instantiations of a same generic type
 extends clause
 permitted types
 vs. type wildcard bound
 what is ...?

type relationship
 inheritance
 super-subtype
 see also type relationship among

type relationship among:
 raw type and parameterized type
 instantiations of different generic types
 lower bound wildcard instantiations and other instantiations of the same generic type
 instantiations of generic type (in general)
 unbounded wildcard instantiations and other instantiations of the same generic type
 upper bound wildcard instantiations and other instantiations of the same generic type

type-safety

type system, see type relationship

type token:
 for generic creation of objects and arrays
 for dynamic retrieval of type arguments

TypeVariable, see java.lang.reflect.TypeVariable

type variable, see type parameter

typing:
 strong
 weak

U

unbounded
 wildcard
 wildcard instantiation, see unbounded wildcard instantiation

unbounded wildcard instantiation:
 array of
 type relationship to other instantiations of the same generic type

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

 vs. bounded wildcard instantiation
 vs. concrete wildcard instantiation
 vs. raw type
 what is ...?

unchecked warning
 avoid
 disable
 eliminate
 enable
 spurious
 suppress
 what is ...?

upper bound:
 wildcard
 wildcard instantiation, see upper bound wildcard instantiation
 what is ...?

upper bound wildcard instantiation:
 type relationship to other instantiations of the same generic type

V

varargs, see variable argument list and varargs warning

varargs warning
 suppress
 what is ...?

variable argument list:
 and non-reifiable types

W

warning:
 unchecked, see unchecked warning

wildcard:
 as type argument
 bounded
 capture, see wildcard capture
 in method signatures
 instantiation, see wildcard parameterized type
 multi-level, see multi-level wildcard
 parameterized type, see wildcard parameterized type
 reflection, see reflective wildcard type
 super-subset relationship
 type, see wildcard parameterized type
 unbounded
 what is ...?

wildcard bound
 extends clause
 lower, see lower bound

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

 permitted types
 upper, see upper bound
 vs. type parameter bound
 what is ...?

wildcard capture:
 assignment-compatibility
 of bounded wildcard
 what is ...?

wildcard parameterized type:
 access to fields and methods
 array of
 as argument type of a method
 as return type of a method
 as supertype
 class literal
 derive from
 in method signatures
 in new expression
 object of
 unbounded, see unbounded wildcard instantiation
 use of
 vs. concrete instantiation
 vs. unbounded wildcard instantiation
 what is ...?
 with lower bound

WildcardType, see java.lang.reflect.WildcardType

X

Xlint compiler option

Y

Z

CONTENT PREVIOUS

file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif
file:///D|/HomePage/HomepageGenerator/sources/HomePage/Images/bar.gif

I work as an independent freelance trainer and develop and conduct
courses mainly in Europe and the USA. I am co-author of the
authoritative book on "C++ Standard IOStreams and Locales"
published at Addison Wesley. I wrote the column "Effective Standard
Library" for the US magazines C++ Report and C/C++ Users Journal.
Currently I am writing a column named "Effective Java" for the
German magazine Java Magazin (formerly published in
JavaSpektrum). I am a Java Champion and an observing member of
the ISO/ANSI C++ standards committee. I am a regular speaker at
conferences all over the world.

Currently my preferred fields of interest are training, coaching, and
mentoring in the area of object-oriented software development in
C++ and Java. I am most interested in development of explanatory
material, including course material, multimedia training, books, and
articles and I enjoy passing on my expertise in lectures, seminars,
and workshops.

My area of expertise is advanced C++ and Java programming,
concurrent programming, Enterprise Java, and many more. For
further information go to my CURRICULUM VITAE.

file:///D|/HomePageNew/HomepageGenerator/sources/HomePage/AboutMe/CV.html

I hereby request NOT to receive unsolicited commercial electronic mail. Failure to
comply to this request will be prosecuted.

Gemäß § 28 BDSG widerspreche ich hiermit jeglicher Speicherung, Verwendung,
Auswertung, Verknüpfung und Weitergabe der oben genannten personenbezogenen
Daten zu kommerziellen Zwecken. Die Zusendung unverlangter Emails werblichen Inhalts
an die oben genannte Email-Adresse wird hiermit ausdrücklich untersagt.
Zuwiderhandlungen werden verfolgt.

http://www.angelikalanger.com/Forms/Contact.html

	Java Generics FAQs
	Java Generics FAQs - Frequently Asked Questions
	Java Generics FAQs - Fundamentals of Java Generics
	Java Generics FAQs - Language Features of Java Generics
	Java Generics FAQs - Generic And Parameterized Types
	Java Generics FAQs - Generic Methods
	Java Generics FAQs - Type Parameters
	Java Generics FAQs - Type Arguments

	Java Generics FAQs - Programming With Java Generics
	Java Generics FAQs - Under The Hood Of The Compiler
	Java Generics FAQs - More Information on Java Generics
	Java Generics FAQs - Glossary
	Java Generics FAQs - Index
	About Angelika Langer
	Imprint

