
Lambda Expressions in Java

Tutorial

Angelika Langer & Klaus Kreft
Angelika Langer Training/Consulting - www.AngelikaLanger.com

Lambda Expressions in Java - A Tutorial

by Angelika Langer & Klaus Kreft

ISBN

Copyright @ 2013 by Angelika Langer & Klaus Kreft

All rights reserved. No part of this publication my be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior permission of the authors.

While every precaution has bee taken in the preparation of this book, the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

2

Table of Contents

TABLE OF CONTENTS ... 3
QUESTIONS & ANSWERS .. 4
LAMBDA EXPRESSIONS.. 8

BACKGROUND AND A BIT OF TRIVIA... 8
WHAT ARE LAMBDA EXPRESSIONS? ... 9

Lambda Expressions vs. Anonymous Inner Classes................................. 9
Methods vs. Functions.. 12
Representation of Lambda Expressions ... 15
Functional Interfaces ... 17

COMPARING LAMBDAS TO ANONYMOUS INNER CLASSES........................... 20
Syntax... 21
Runtime Overhead.. 21
Variable Binding .. 22
Scoping... 23

WHY DO WE NEED LAMBDAS? ... 24
Internal vs. External Iteration.. 25
Streams and Bulk Operations... 27

PROGRAMMING WITH LAMBDAS ... 29
Fluent Programming.. 29

Imperative Approach.. 30
Declarative Approach .. 30
Fluent Programming .. 32

Execute-Around-Method Pattern ... 34
Wrap-Up .. 37

DEFAULT METHODS.. 38
INTERFACE EVOLUTION .. 38
MULTIPLE INHERITANCE AND AMBIGUITIES ... 40

REFERENCE TO RELATED READING ... 42
DOCUMENTATION & SPECIFICATION... 42
CONFERENCE PRESENTATIONS.. 42
TOOL SUPPORT .. 43
MISCELLANEOUS... 44

APPENDIX.. 45
SOURCE CODE OF FLUENT PROGRAMMING CASE STUDY 45
SOURCE CODE OF EXECUTE-AROUND-METHOD PATTERN CASE STUDY 48

INDEX ... 50

 3

Questions & Answers
What is the closure debate?
A discussion in 2006-2009 of three proposals for a
lambda-like language feature; all three proposals
were discarded.

closure debate 8

Why does the Java programming language need
lambda expressions?
Because many modern programming languages have
a similar language features., as a preparation for fine-
grained automated parallelization on multi-core
hardware, in particular for bulk operations on
collections.

multicore
hardware

8

What is a lambda expression in Java?
A concise notation for a method without a name.

lambda
expression

9

What do lambda expression and anonymous inner
classes have in common?
Both are used to implement ad-hoc functionality aka
anonymous methods.

ad-hoc
functionality

9

What is a method? What is a function? How do
they differ?
Functions are executed, but also passed around like
data. They do not mutate data; they just produce
new results. The order of their invocation does not
matter.
Methods are executed and may mutate data and
produce side effects. The invocation order matters.

method &
function
difference

11

What is a pure function as opposed to an impure
function?
A pure function never modifies any data, whereas an
impure function may produce side effects.

pure function 13

How is a lambda expression represented at
runtime?
By a lambda object; both the lambda object and its
type are dynamically created by the virtual machine
at runtime.

runtime
representation

15

What is the type of a lambda expression?
In isolation a lambda expression has no definite type;
its type depends on the context in which it appears
and is inferred by the compiler.

type of
lambda
expression

17

4

What is the target type of a lambda expression?
A type to which the lambda expression can be
converted in a given context; the target type must be
a functional interface type.

target type 17

What is a functional interface?
An interface with a single abstract method.

functional
interface

17

How does the syntax of lambda expressions differ
from the syntax of anonymous inner class?
The syntax of lambda expressions is less verbose and
more readable.

syntax 20

For an anonymous inner class type definition and
instance creation are tied together. How are
lambda expression translated?
Creation of the lambda object and its type is
implicitly taken care of by the virtual machine; it is
done at runtime.

runtime
representation

21

Anonymous inner class can have bindings to
variables of the enclosing scope. Is the same true
for lambdas?
Yes, lambda expressions can capture effectively final
variables from their enclosing scope and can bind to
the enclosing instance via this and super.

variable
binding

22

An anonymous inner class is a name scope of its
own. How about lambda expressions?
Lambda expressions are part of the scope in which
they appear; they are not scopes of their own.

lexical
scoping

23

What does this refer to in a lambda expression?
It refers to the enclosing instance (different from an
anonymous class where this refers to the inner
class's instance).

meaning of
this/super

23

What do we need lambda expressions in Java for?
To enable convenient use of the overhauled
collection framework in general and it parallel bulk
operations in particular.

collection
framework
extension

24

What is a bulk operation?
An operation that concern many or all elements in a
sequence.

bulk
operations

24

What is internal and external iteration?
External iteration uses an iterator for access to all

internal
iteration

25

 5

sequence elements. Internal iteration is performed by
the sequence itself; the user just supplies an operation
to be applied to all sequence elements.

What is a stream?
An abstraction from the JDK collection framework
that supports bulk operations with internal iteration.
There are sequential and parallel streams.

streams 27

What is filter-map-reduce?
Typical bulk operation on sequences with internal
iteration.

filter-map-
reduce

27

What is fluent programming?
A programming technique that chains operations, i.e.,
a style where operations return a value that allows the
invocation of another operation.

fluent
programming

29

What is declarative programming?
A programming style that describe what to rather
than how to do it.

declarative
programming

30

What is pipelining?
An optimization for chained operations. Rather than
looping over all elements in the sequence repeatedly
(per operation in the chain) the entire chain of
operations is applied to each element in just one pass
over the sequence.

pipelining 32

What is the execute-around-method patter?
A programming technique for eliminating code
duplication.

execute-
around-
method

33

What is a default method?
An interface method with a default implementation.

default
method

38

What are default methods intended for?
The are used for interface evolution, i.e., extending
existing interfaces with additional methods without
breaking any implementing classes.

interface
evolution

38

Does multiple inheritance lead to problems with
ambiguities?
Yes, there arise ambiguities with inheritance of
default methods, but they are easily resolved using
the right syntax.

ambiguous
inheritance 40

Does Java with default methods have multiple
inheritance (of implementation)?

multiple
inheritance 40

6

Yes, a class can inherit non-abstract methods from
one superclass and multiple interfaces.

 7

Lambda Expressions

closure debate multicore hardware

Background and a Bit of Trivia

Many popular programming languages nowadays have a language feature
known as "lambdas" aka "closures". Such languages do no only include
classic functional languages such as Lisp or Scheme, but also younger
ones such as JavaScript, Python, Ruby, Groovy, Scala, C#, and even C++
has lambdas.1 Some of these lambda-supporting languages run on the
Java Virtual Machine, and, naturally, Java as the most prominent
programming language on the JVM did not want to be left behind. A
discussion regarding the addition of lambdas/closures began in 2006,
shortly after Java 5 had been released. Three perfectly reasonable
proposals for closures emerged, but unfortunately they did not converge.
Instead there was a heated debate regarding the pros and cons of the
various diverging ideas2. In 2009 the effort grounded to a halt and it
ultimately looked like Java would never ever be extended by a lambda or
closure feature. Consequently, Java's immanent decline as a vibrant
programming language was predicted and the slogan of "Java is the new
Cobol" was born.

Then, in 2010, Oracle declared that Java's death is not an option and that -
quite the converse - Java is supposed to stay around for many years to
come as a popular language in wide-spread use3. For that to happen, Java
is required to adapt to the needs of modern hardware and in particular
modern and future multi-core platforms. On a platform with multiple
CPU cores many operations can and should be executed in parallel. While
concurrent programs keep a couple of dozens of CPU cores busy with the
fairly coarse-grained parallelization that is common practice today, it is
obvious that it would take a more fine-grained approach to keep hundreds
of CPU cores busy. In order to support fine-grained parallelization, it was
decided that the JDK collections framework must undergo a major
overhaul. Collections need bulk operations that apply functionality to all
elements in a sequence and do so with several threads in parallel.

1 See Wikipedia for examples of the syntax in which these languages express lambdas:
http://en.wikipedia.org/wiki/Lambda_calculus#Lambda_calculus_and_programming_lan
guages.
2 See the "Closure Debate" at http://www.javaworld.com/javaworld/jw-06-2008/jw-06-
closures.html for an overview.
3 See Mark Reinhold's blog at https://blogs.oracle.com/mr/entry/closures.

8

http://en.wikipedia.org/wiki/Lambda_calculus%23Lambda_calculus_and_programming_languages
http://en.wikipedia.org/wiki/Lambda_calculus%23Lambda_calculus_and_programming_languages
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-closures.html%20for%20an%20overview
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-closures.html%20for%20an%20overview
https://blogs.oracle.com/mr/entry/closures

Implementation of parallel bulk operations for collections requires a
better separation of concerns, namely separating "what" is applied to all
sequence elements from "how" it is applied to the sequence elements.
And this is what lambdas are for: they provide a convenient and concise
notation for functionality, which can be passed as an argument to a bulk
operation of a collection, which in turn applies this functionality in parallel
to all its elements. lambda expression

What are Lambda Expressions?

The term lambda (short for: lambda expression) stems from Lambda calculus,
which is a theoretical framework for describing functions and their
evaluation. Rather than delving into the theoretical background let us
keep it simple: a lambda expression denotes a piece of functionality. Here
is an example of a lambda expression in Java:

(int x) -> { return x+1; }

Merely looking at it tells that a lambda expression is something like a
method without a name. It has everything that a method has: an
argument list, which is the (int x) part of the sample lambda, and a body,
which is the { return x+1; } part after the arrow symbol. Compared to
a method a lambda definition lacks a return type, a throws clause, and a
name. Return type and exceptions are inferred by the compiler from the
lambda body; in our example the return type is int and the throws clause
is empty. The only thing that is really missing is the name. In this sense, a
lambda is a kind of anonymous method. ad-hoc functionality
Lambda Expressions vs. Anonymous Inner Classes

Lambdas are implemented "ad hoc". That is, where and when they are
needed. To this regard they are similar to a Java language feature that we
have been using all along, namely anonymous inner classes. Anonymous
inner classes, too, are "ad hoc" implementations - not just of a single
method, but of an entire class with one or several methods. Both lambdas
and anonymous inner classes are typically defined for the purpose of
passing them as an argument to a method, which takes the anonymous
functionality and applies it to something.

Here is a method from the JDK that takes a piece of functionality and
applies it; it is the listFiles(FileFilter) method from class
java.io.File.

public File[] listFiles(FileFilter filter) {
 String ss[] = list();
 if (ss == null) return null;

 9

 ArrayList<File> files = new ArrayList<>();
 for (String s : ss) {
 File f = new File(s, this);
 if ((filter == null) || filter.accept(f))
 files.add(f);
 }
 return files.toArray(new File[files.size()]);
}

The listFiles(FileFilter) method takes a piece of functionality as an
argument. The required functionality must be an implementation of the
FileFilter interface:

public interface FileFilter {
 boolean accept(File pathname);
}

A file filter is a piece of functionality that takes a File object and returns a
boolean value. The listFiles method applies the filter that it receives as
an argument to all File objects in the directory and returns an array
containing all those File objects for which the filter returned true.

For invocation of the listFiles method we must supply the file filter
functionality, i.e. an implementation of the FileFilter interface.
Traditionally, anonymous inner classes have been used to provide ad hoc
implementations of interfaces such as FileFilter.

Using an anonymous inner class the invocation of the listFiles method
looks like this:

File myDir = new File("\\user\\admin\\deploy");
if (myDir.isDirectory()) {
 File[] files = myDir.listFiles(
 new FileFilter() {
 public boolean accept(File f) { return f.isFile(); }
 }
);
}

Using a lambda expression it looks like this:

File myDir = new File("\\user\\admin\\deploy");
if (myDir.isDirectory()) {
 File[] files = myDir.listFiles(
 (File f) -> { return f.isFile(); }
);
}

The example illustrates a typical use of lambdas. We need to define
functionality on the fly for the purpose of passing it to a method.
Traditionally, we used anonymous inner classes in such situations, which
means: a class is defined, an instance of the class is created and passed to

10

the method. Since Java 8, we can use lambda expressions instead of
anonymous inner classes. In both cases we pass functionality to a method
like we usually pass objects to methods: This concept is known as "code-
as-data", i.e. we use code like we usually use data. Using anonymous inner
classes, we do in fact pass an object to the method. Using lambda
expressions object creation is no longer required4; we just pass the lambda
to the method. That is, with lambda expression we really use "code-as-
data".

In addition to getting rid of instance creation, lambda expressions are
more convenient. Compare the alternatives:

Using an anonymous inner class it looks like this:

File[] files = myDir.listFiles(

 public boolean accept(File f) { return f.isFile(); }

new FileFilter() {

 }
);

Using a lambda expression it looks like this:

File[] files = myDir.listFiles(
 (File f) -> { return f.isFile(); }
);

We will later5 see, that in addition to lambda expressions there is a feature
called method references. They can be used similar to lambdas. With a
method reference the example looks even simpler.

Using a method reference it looks like this:

File[] files = myDir.listFiles(File::isFile);

Clearly, use of a lambda expression or a method reference reduces the file
filter to its essentials and much of the syntactic overhead that definition of
an anonymous inner class requires is no longer needed. method & function difference

4 More precisely, object creation is no longer explicit. Under the hood, a lambda
expression is eventually translated into a synthetic class type and an instance thereof. The
key difference is that the class definition and instance creation is explicitly done by the
programmer, when anonymous inner classes are used, whereas the class definition and
instance creation is implicitly done by the runtime system. Details regarding the
translation process can be found in the section on "Lambda Translation" in the Lambda
Reference document.
5 See the section on "Method References" in the Lambda Reference document.

 11

Methods vs. Functions

Lambda expressions are a key concept in so-called functional programming
languages. Java in contrast is an object-oriented programming language.
Adding an element from a functional language to Java allows for
programming techniques that were previously uncommon due to lack of
support. In order to understand what lambdas are and how they can be
used we want to look into some of the principles of functional
programming. An important issue is the difference between a method and
a function.

Note, that in the following, we use the terms "method" and "function" to
denote concepts and to point out the difference between the two
concepts. In practice, the terms "method", "function", and "procedure"
are often used interchangeably to describe similar principles. Also, in
practice, the difference between the concepts may be not be very
pronounced. Since we want to explore how lambdas differ from other
concepts in Java that we are familiar with, we will focus on the differences
between the concepts of a method and a function.

In order to grasp the difference between methods and functions, we take
a brief dip into the history and principles of programming languages.

Both methods and functions represent a piece of reusable functionality.
They both take arguments, have some kind of body, which is executable
code and represents the actual functionality, and they may produce a
result and/or side effects. In Java, a method always belongs to a class; Java
has no concept of free functions outside of a class. A method has read and
write access to fields of the class to which it belongs and may modifies
these fields. A method can also modify the arguments it receives and
produce other side effects, but most of the time methods modify fields or
produce a result. A function, in contrast, operates solely on the arguments
it receives. It typically does not modify any data; often it does not even
have access to any mutable data.

Methods and functions are used in different ways. The idea of methods
(or procedures) stems from procedural (aka imperative) languages such as
Fortran, Pascal, and C. In those languages procedures are invoked in a
specific order and may operate on data which they read and modify. The
term "procedural" stems from the use of "procedures"; the notion of an
"imperative" language stems from the fact that the programmer dictates
how things are done, i.e., in which order which procedures are applied to
which data. In an imperative language the order of applying procedures
matters. This is obvious when we consider that procedures may modify
data. After all, it makes a substantial difference in which order

12

modifications happen and whether data is read before or after a
modification.

Object-oriented languages such as C++, Smalltalk, Eiffel, and Java extend
the procedural approach. They bundle data and procedures into objects
with state (the fields) and behaviour (the methods). The principle of using
methods is still the same as in procedural languages: methods are invoked
and operate on data (the fields of the class to which the method belongs),
which they read and may alter. For this reason, object-oriented languages
are imperative languages, too. pure function

The idea of functions stems from functional languages such as Lisp,
Haskell, Closure, and Scala. These languages have pure functions that
behave as described above: they do not mutate data, instead they produce
results from the arguments they receive. In addition, functions are used
differently. A function, too, is invoked, but the key idea is that functions
are passed around as arguments to an operation or as the result of an
operation. This is similar to passing around data or objects in procedural
and object-oriented languages - hence the previously mentioned notion of
"code-as-data".

Functional languages are declarative as opposed to imperative. They describe
what a program should accomplish, rather than describing how to go about
accomplishing it. In a declarative language the programmer does not
dictate which steps must be performed in which order. Instead, there is a
clear separation between what is done (this is what the programmer
declares) and how it is done (this is determined elsewhere, by the language
or the implementation). In pure functional languages such as Haskell the
functions do not have any side effects. In particular, they do not modify
data or objects. If no side effects occur, order does not matter.
Consequently it is easy to achieve a clear separation between "how" and
"what" is done.

Hence there are the following differences between the concept of
methods and pure functions :

 Method Pure Function

Mutation A method mutates, i.e., it
modifies data and
produces other changes
and side effects.

A pure function does not
mutate; i.e., it just inspects
data and produces results in
form of new data.

How vs.
What

Methods describe how
things are done.

Pure functions describe what
is done rather than how it is
done.

 13

Invocation
Order

Methods are used
imperatively, i.e., order of
invocation matters.

Pure functions are used
declaratively; i.e., order of
invocation does not matter.

Code vs.
Data

Methods are code, i.e., they
are invoked and executed.

Functions are code-as-data;
i.e., they are not only
executable, but are also
passed around like data.

The bottom line is:

 We can express methods in Java. These are the methods of Java classes
that we are familiar with. They are executed, they may mutate data,
the order of their invocation matters, and they describe how things
are done.

 We can express pure functions in Java. Traditionally, functions were
expressed as anonymous inner classes and now can be expressed as
lambda expressions. Lambdas and anonymous classes are passed
around like data, typically as arguments to a method. If they do not
modify data they are pure functions. In this case their invocation order
does not matter and they describe what is done rather than how it is
done.

Since Java is a hybrid language (object-oriented with functional elements),
the concepts are blurred. For instance, a method in Java need not be a
mutator. If it does not modify anything, but purely inspects data, then it
has properties of a function. Conversely, a function in Java (i.e., an
anonymous inner class or lambda expression) need not be pure. It may
modify data or produce other side effects, in which case it has properties
of a method. Despite of the fuzziness in practice, it may be helpful to
keep the concepts of "method" and "function" in mind.

Let us revisit the previous example of a file filter to check what the
concepts look like in practice:

File myDir = new File("\\user\\admin\\deploy");
if (myDir.isDirectory()) {
 File[] files = myDir.listFiles(
 (File f) -> { return f.isFile(); }
);
}

The listFiles method of class java.io.File is a method. It operates on
the static and non-static data of the File object it is invoked on. A File
object contains fields that give access to properties of the file system

14

element it represents, e.g. its pathname, whether it is a file or a directory,
which other elements it contains, etc. These fields are accessed by the
listFiles method.

The listFiles method takes a file filter as an argument. The file filter is a
function, here expressed as a lambda expression. It is passed to the
listFiles method which then applies it to all files and directories in
myDir. The example illustrates the code-as-data principle: the function (i.e.
the file filter lambda) is passed to an operation (i.e. the listFiles
method). It also illustrates the separation between "what" and "how": the
function describes "what" is supposed to be applied to all files and
directory and the receiving method controls "how" the filter is applied,
e.g. in which order. In addition, the example illustrates the principle of a
pure function: the file filter does not produce side effects; it just takes a
File and returns a boolean.

In contrast, here is an example of an impure function:

File myDir = new \user\\admin\\deploy"); File("\
final LongAdder dirCount = new LongAdder();
final LongAdder filCount = new LongAdder();
if (myDir.isDirectory()) {
 myDir.listFiles((File f) -> {
 if (f.isDirectory()) {
 dirCount.increment();
 return false;
 }
 if (f.isFile()) {
 filCount.increment();
 return false;
 }
 return false;
 }
);
}

The file filter is again expressed as a lambda, but this time it produces side
effects, namely incrementing two counters.

After this excursion into the realm of programming language principles,
we know that lambda expressions in Java denote (pure or impure)
functions. As Java is an object-oriented and not a functional
programming language the question is: How are lambdas aka functions
integrated into the Java programming language? runtime representation

Representation of Lambda Expressions

As we have seen in previous examples, we use lambda expressions to
define a function, which we can pass as an argument to an operation. On

 15

the receiving side, i.e., in the operation that takes the lambda, it is used
like an object.

For illustration we will again use the previous example of the listFiles
method from class java.io.File. Below we see where the lambda
expression is defined and passed on as an argument to the listFiles
method.

File myDir = new File("\\user\\admin\\deploy");
if (myDir.isDirectory()) {
 File[] files = myDir.listFiles(
 (File f) -> { return f.isFile(); }
);
}

Here is the receiving side, i.e., the implementation of the listFiles
method from class java.io.File:

 public File[] listFiles(FileFilter filter) {
 String ss[] = list();
 if (ss == null) return null;
 ArrayList<File> files = new ArrayList<>();
 for (String s : ss) {
 File f = new File(s, this);
 if ((filter == null) || filter.accept(f))
 files.add(f);
 }
 return files.toArray(new File[files.size()]);
 }

The listFiles method take a FileFilter object and invokes its accept
method.

The example demonstrates that a lambda expression has properties in
common with functions and objects, depending on the point of view.

 Conceptually, a lambda expression is a function. It is an unnamed
piece of reusable functionality. It has a signature and a body, but no
name. It may or may not be pure, i.e., may or may not have side
effects. We pass it around as an argument to a method or as a return
value from a method.

 When a lambda expression is passed as an argument to a method the
receiving method treats it like an object. In the example the lambda
expression (or more precisely, a reference to the lambda expression)
is received as the argument of the listFiles method. Inside the
listFiles method the lambda expression is a reference to an object
of a subtype of the FileFilter interface. This lambda object is a regular
object; e.g. it has an address and a type.

16

Basically, you think in terms of a function when you define a lambda
expression and in terms of a method when you use it. The lambda object
that links definition and use together is taken care of by the compiler and
the runtime system. We as users need not know much about it.

Practically all decisions regarding the representation and creation of the
lambda object (short for: the object that represents a lambda expression at
runtime) are made by the compiler and the runtime system. This is good,
because it enables optimizations under the hood that we as users neither
want to deal with nor care about. For instance, from the context in which
the lambda expression is defined the compiler captures all information
that is needed to create a synthetic type for a lambda object, but the
compiler does not yet create that type; it just prepares the type generation.
The actual creation of the lambda object's synthetic type and the creation
of the lambda object itself are done dynamically at runtime by the virtual
machine. For this dynamic creation of the synthetic lambda type and the
lambda object the invokedynamic byte code is used, which was added to
Java in release 7. Using these dynamic features it is possible to delay the
creation until first use, which is an optimization: if you just define, but
never use, the lambda expression then neither its type nor the lambda
object will ever be created.6 type of lambda expression target type functional interface

Functional Interfaces

Part of the magic of tying the definition of a lambda expression to the use
of a lambda expression is inference of the type by which the lambda
expression is used. This type is called the target type. The synthetic type
that the runtime system dynamically creates, as mentioned above, is a
subtype of the target type.

In the previous file filter example we have seen that the target type of our
lambda expression is FileFilter. In the example we define a lambda
expression, pass it to the listFiles method, in which it is then used like
an object of a subtype of FileFilter. In a way, this is surprising. After
all, we did not specify that our lambda expression implements the
FileFilter interface. In fact, we did not say anything regarding the
lambda expression's type. Similarly, the receiving listFiles method never
indicated that it happily accepts lambda expressions. Instead it requires an
object of a subtype of FileFilter. How does it work?

6 If you are interested in the details of the creation of the lambda object please read the
section on "Lambda Translation" in the Lambda Reference document or take a look at
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html.

 17

http://cr.openjdk.java.net/%7Ebriangoetz/lambda/lambda-translation.html

The underlying magic that the compiler performs to make it happen is type
inference. The compiler takes a look at the context in which the lambda
expression is defined and figures out which type is required. Then it takes
a look at the lambda expression itself and figures out whether the lambda
is compatible to the required type (plus minus a couple of adjustments if
needed).

If Java were a functional language then the most natural type for a lambda
expression would be some kind of function type, which is a special category
of type that is reserved for description of functions. A function type
merely describes the signature and could for example look similar to
(int,int)->boolean if it is meant to denote the type of a function that
takes two int arguments and returns a boolean value.

Java is no functional language and traditionally had no such thing as a
function type. So, the language designers had the choice to add function
types as new category of type. Since they did not want to introduce major
changes to Java's type system they tried to find a way to integrate lambda
expressions into the language without resorting to function types. They
found a way to do it by using special interface types instead: these
interfaces as so-called functional interfaces, previously known as SAM types
(where SAM stands for Single Abstract Method).

A functional interface essentially is an interface with one method.7
Countless such interfaces exist in the JDK already, some of them since its
first release. The interface Runnable is a classic example of a functional
interface. It demands the implementation of exactly one method:
void r un(). There are many more: Readable, Callable, Iterable,
Closeable, Flushable, Formattable, Comparable, Comparator, or the
FileFilter interface, which we have been using in the previous example.

As functional interfaces and lambda expressions both deal with a single
method, the language designers decided that the compiler would convert
each lambda expression to a matching functional interface type. This
conversion usually happens automatically, because lambda expressions
may only appear in a context where such a conversion is feasible.

Let us reconsider the previous example:

File[] files = myDir.listFiles(

7 Details regarding functional interfaces can be found in the section on "Functional
Interfaces" in the Lambda Reference document. These details include, for instance, that
functional interfaces can under certain circumstances have more than one method. Also,
there is a @FunctionalInterface annotation that enables compiler checks for interfaces
that are supposed to be used as functional interfaces.

18

 (File f) -> { return f.isFile(); }
);

The high-lighted part is the lambda expression. It appears as the
argument to the invocation of the listFiles method of class
java.io.File. The compiler knows the signature of method listFiles
and finds that the method declares java.io.FileFilter as its parameter
type. Hence the required type in this particular context is FileFilter.

Here is what the FileFilter interface looks like:

public interface FileFilter { boolean accept(File pathname); }

FileFilter requires exactly one method and for this reason is a functional
interface type. Our lambda expression has a matching signature: it takes a
File argument, returns a boolean value and throws no checked exception.
Hence the compiler converts the lambda expression to the functional
interface type FileFilter. Inside the listFiles method the lambda is
then indistinguishable from an object of type FileFilter. Here is the
implementation of method File.listFiles:

public File[] listFiles(FileFilter filter) {
 String ss[] = list();
 if (ss == null) return null;
 ArrayList<File> files = new ArrayList<>();
 for (String s : ss) {
 File f = new File(s, this);
 if ((filter == null) || filter.accept(f))
 files.add(f);
 }
 return files.toArray(new File[files.size()]);
}

Inside this method the lambda is bound to the filter argument. The
lambda's functionality is triggered when the functional interface's method
is invoked, i.e. when filter.accept() is called.

The conversion to a functional interface can have funny effects,
demonstrated in the following example:

Say, we have two functional interfaces:

public interface FileFilter { boolean accept(File pathname); }

and

public interface Predicate<T> { boolean test(T t); }

 19

Our lambda is convertible to both functional interface types8:

FileFilter filter = (File f) -> { return f.isFile(); };
Predicate<File> predicate = (File f) -> { return f.isFile(); };

filter = predicate; // << error: incompatible types

If, however, we try to assign the two resulting variables to each other the
compiler would flag it as an error, although the two variables represent
the same lambda expression. The reason is that the two variables to
which the lambda is bound are of two different, incompatible types.

Also, there might occasionally be situations in which the compiler cannot
figure out a matching functional interface type, like in this example:

Object ref = (File f) -> { return f.isFile(); };

The assignment context does not provide enough information for a
functional type conversion and the compiler reports an error. Adding a
type cast easily solves the problem:

Object ref = (FileFilter) (File f) -> { return f.isFile(); };

By and large, functional interface conversion is a way to keep matters
simple and avoid the addition of function types to Java's type system.9

Comparing Lambdas to Anonymous Inner Classes

Lambda expressions appear in situations where we traditionally used
anonymous inner classes, namely in places where an operation asks for a
piece of functionality (i.e. for a function). While lambda expressions and
anonymous inner classes are somewhat exchangeable they differ in many
ways from each other. syntax

8 Expressions that have different type depending on the context in which they appear are
called poly expression. The actual type of a poly expression is always inferred by the
compiler. Lambda expressions and method references are examples of poly expression.
Poly expressions also occur in conjunction with generic; for example instance creation
expressions that use a diamond <> like new ArrayList<>() are poly expressions.
9 Details regarding functional interface conversion can be found in the sections on "Target
Typing" and "Type Inference" in the Lambda Reference document. There you find details
regarding which context is suitable for functional interface conversion and how conversion
to generic functional interfaces works.

20

Syntax

Quite obviously the syntax is different. The notation for a lambda
expression is more concise. Here are examples illustrating how concise a
lambda notation can be compared to an anonymous inner class:

Anonymous inner class:

Fi tFiles(le[] fs = myDir.lis
 new FileFilter() {
 public boolean accept(File f) { return f.isFile(); }
 }
);

Lambda expression in various forms including method reference:

File[] files = myDir.listFiles((File f) -> {return f.isFile();});
File[] files = myDir.listFiles(f -> f.isFile());
F e

ile[] fil s = myDir.listFiles(File::isFile);

runtime representation

Runtime Overhead

Anonymous inner classes come with a certain amount of overhead
compared to lambda expressions. Use of an anonymous inner class
involves creation of a new class type and creation of a new object of this
new type and eventually invocation of a non-static method of the new
object.

At runtime anonymous inner classes require:

o class loading,
o memory allocation and object initialization, and
o invocation of a non-static method.

A lambda expression needs functional interface conversion and eventually
invocation. The type inference required for the functional interface
conversion is a pure compile-time activity and incurs no cost at runtime.
As mentioned earlier, the creation of the lambda object and its synthetic
type is performed via the invokedynamic byte code. This allows to defer
all decisions regarding type representation, the instance creation, and the
actual invocation strategy to runtime. This way the JVM can choose the
optimal translation strategy. For instance, the JVM can reduce the effort
to the invocation of a constant static method in a constant pool, which
eliminates the need for a new class and/or a new object entirely.

 21

The bottom line is that lambda expressions have the potential for
optimizations and reduced runtime overhead compared to anonymous
inner classes.10 variable binding

Variable Binding

Occasionally, a function needs access to variables from the enclosing
context, i.e., variables that are not defined in the function itself, but in the
context in which the lambda appears. Anonymous inner classes have
support for this kind of variable binding (also called variable capture): an inner
class has access to all final variables of its enclosing context. Here is an
example:

void met { hod()
 final int cnt = 16;

 Runnable r = new Runnable() {
 public void run() {
 System.out.println("count: " + cnt);
 }
 };
 Thread t = new Thread(r);
 t.start();

 cnt++; // error: cnt is final
}

The anonymous inner class that implements the Runnable interface
accesses the cnt variable of the enclosing method. It may do so, because
the cnt variable is declared as final. Of course, the final cnt variable
cannot be modified.

Lambda expressions, too, support variable binding. Here is the same
example using a lambda expression:

void method() {
 int cnt = 16;

 Runnable r = () -> { System.out.println("count: " + cnt);
};

 Thread t = new Thread(r);
 t.start();

 cnt++; // error: cnt is implicitly final
}

10 Details regarding the translation of lambda expressions can be found in the sections on
"Translation of Lambda Expressions" in the Lambda Reference document.

22

The difference is that the cnt variable need not be declared as final in the
enclosing context. The compiler automatically treats it as final as soon as
it is used inside a lambda expression. In other words, variables from the
enclosing context that are used inside a lambda expression are implicitly
final (or effectively final). Naturally, you can add an explicit final
declaration, but you do not have to; the compiler will automatically add it
for you.

Note, since Java 8, the explicit final declaration is no longer needed for
anonymous inner classes as well. Since Java 8, both lambda expressions
and anonymous inner classes are treated the same regarding variable
binding. Both can access all effectively final variables of their respective
enclosing context. lexical scoping meaning of this/super

Scoping

An anonymous inner class is a class, which means that it introduces a
scope for names defined inside the inner class. In contrast, a lambda
expression is lexically scoped, which means that the lambda expression is not
a scope of it own, but is part of the enclosing scope. Here is an example
that illustrates the difference:

Anonymous inner class:

void m od() { eth
 int cnt = 16;
 Runnable r = new Runnable() {
 public void run() { int cnt = 0; // fine
 System.out.println("cnt is: " + cnt); }
 };
 ...
}

Lambda expression:

void method() {
 int cnt = 16;
 Runnable r = () -> { int cnt = 0; // error: cnt has already been defined
 System.out.println("cnt is: " + cnt);
 };
 ...
}

Both the anonymous class and the lambda define a variable named cnt
while there already is a variable with this name defined in the enclosing
method. Since the anonymous class establishes a scope of it own it may
define a second cnt variable which is tied to the scope of the inner class.
The lambda, in contrast, is part of the enclosing scope and the compiler

 23

considers the definition of a cnt variable in the lambda body a colliding
variable definition. In the scope of the enclosing context there already is a
definition of a cnt variable and the lambda must not define an additional
cnt variable of its own.

Similarly, the different scoping rules have an impact on the meaning of
keywords such as this and super when used inside an anonymous class or
a lambda expression. In an anonymous class this denotes the reference
to the object of the inner class type and super refers to the anonymous
class's super class. In a lambda expression this and super mean whatever
they mean in the enclosing context; usually this will refer to the object of
the enclosing type and super will refer to the enclosing class's super class.
Essentially it means, that it might not always be trivial to replace an
anonymous class by a lambda expression. IDEs might help and offer
functionality that refactors anonymous classes into lambda expressions.
collection framework extension bulk operations

Why do we need lambdas?

The key reason for adding lambdas to the Java programming language is
the need to evolve the JDK and in particular the JDK's collection
framework.11 The traditional API design of the Java collections in package
java.util renders certain optimizations impossible. At the same time,
these optimizations are badly needed. Considering the current and future
hardware architecture that we design our software for, we need support
for increased parallelism and improved data locality. Let us see why.

Multi-core and multi-CPU platforms are the norm. While we deal with a
couple of cores today, we will have to cope with hundreds of cores some
time in the future. Naturally, we need to increase the effort for replacing
serial, single-threaded execution by parallel, multi-threaded execution.
The JDK intends to support this effort by offering parallel bulk operations
for collections. An example of a parallel bulk operation is the application of
a transformation to each element in a collection. Traditionally such a
transformation is done in a loop, which is executed by a single thread,
accessing one sequence element after the other. The same can be
accomplished in parallel with multiple threads: break down the task of
transforming all elements in a sequence into many subtasks each of which
operates on a subset of the elements. Naturally, this can be done without
extending the collection framework, e.g. by use of existing JDK
abstractions such as the fork-join-framework for instance, but it is quite a

11 See Mark Reinhold's blog at https://blogs.oracle.com/mr/entry/closures.

24

https://blogs.oracle.com/mr/entry/closures

bit of an effort and requires a thorough understanding of concurrency
issues. Parallel execution of bulk operations on collection is not a
triviality. Hence, a key goal of evolving the JDK collections is support for
parallelism in a way that is easy and convenient to use. In order to make
this happen the collections' API must be extended.

A key point of the extension is to separate "what" operations are applied
to sequence elements in a collection from "how" the operations are
applied to these elements. Without a separation of concerns the
collections have no chance to shield us from the complications of parallel
execution of bulk operations. Here is where we come full circle and the
previously discussed principles of functional programming including
lambdas come into play.

New abstractions have been added to the collection framework in package
java.util, most prominently the stream abstractions in package
java.util.stream. Collections can be converted to streams and streams,
different from collections, access the sequence elements via internal
iteration (as opposed to external iteration.) internal iteration

Internal vs. External Iteration

Iteration is the process of traversing a sequence. It can be performed in
two ways: as an internal or external iteration.12 Internal iteration means that
the sequence itself controls all details of the iteration process. External
iteration means that the sequence only supports iteration, usually via a so-
called iterator, but many aspects of the iteration are controlled by the
collection's user. Traditionally, Java collections offer external iteration.
Since Java 8, internal iteration is supported via streams. Let us see, what
the difference between internal and external iteration is.

Traditionally in Java, elements in a collection are accessed via an iterator.
For illustration we explore an example that uses a bank account
abstraction named Account:

class Account {
 private long balance;
 ... constructors and more methods ...
 public long balance() { return balance; }

12 The iterator pattern is one of the so-called Gang of Four design patterns
(Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John. (1995).
Design patterns: Elements of reusable object-oriented software . Addison-Wesley.)

 25

}

We iterate over a list of bank accounts using a for-each loop:

private static void checkBalance(List<Account> accList) {
 for (Account a : accList)
 if (a.balance() < a.threshold) a.alert();
}

The for-each-loop internally uses an iterator and basically looks like this:

Iterator iter = accList.iterator();
while (iter.hasNext()) {
 Account a = iter.next();
 if (a.balance() < a.threshold) a.alert();
}

This loop has potential for improvement in several areas:

 The logic of traversing the sequence is intermingled with the
functionality that is applied to each element in the sequence.
Separating the concerns would allow for optimizations regarding how
the elements are accessed.

 The execution is single-threaded. Multi-threaded execution is
possible by means of the fork-join thread pool, but it would be
substantially more complex.

 There is a certain amount of redundancy. The iterator's hasNext and
next method have overlap; they both figure out whether there is a
next element. The overhead could be eliminated.

The traditional access to elements in a sequence via an iterator is known
as external iteration in contrast to internal iteration.

The idea of internal iteration is: the sequence itself determines how
elements in a sequence are accessed and the sequence's user is only
responsible for specifying what has to be applied to each element in the
sequence. While the external iteration intermingles the logic of sequence
traversal with the functionality applied to each of the sequence elements,
internal iteration separates the concerns. Here is what internal iteration
might look like. Since Java 8, a collection has a forEach method that
looks like this:

public void forEach(Consumer<? super E> consumer);

It uses the Consumer interface, which looks like this:

public interface Consumer<T> { public void accept(T t); }

26

Given this forEach method the sequence's user only has to supply the
functionality that is to be applied to each element in the sequence.

private sta d checkBalance(List<Account> accList) { tic voi
 accList.forEach(
 (Account a) -> { if (a.balance() < a.threshold)
 a.alert();
 }
);
}

Now the concerns are separated: the collection is responsibility for
figuring out how to access all elements and how to apply the specified
functionality to them. The user is responsible for supply of a reasonable
functionality to be applied to the sequence elements. Given this
separation, the implementation of the collection and its forEach method
have the liberty to optimize away the overhead of the iterator's hasNext
and next method, to split the task into subtasks and execute them in
parallel, and several further optimizations such as lazy evaluation, pipeline
optimizations for consecutive operations, or out-of-order execution. The
traditional intermingled external iteration prevents all of these
optimizations.

Given the separation of concerns it is now easy to have the loop executed
in parallel by multiple threads. Since Java 8, collections can be turned into
so-called streams, of which there is a sequential and a parallel variety. The
parallel version of the example above would look like this:

private static void checkB List<Account> accList) { alance(
 accList.parallelStream().forEach(
 (Account a) -> { if (a.balance() < a.threshold) a.alert(); }
);
}

In the following section we take a closer look at streams, their relationship
to collections, and their support for bulk operations via internal iteration.
filter-map-reduce streams

Streams and Bulk Operations

Since Java 8 the JDK has a new abstraction named Stream<E> which is a
view to a collection and has bulk operations that perform internal
iteration. These bulk operations include forEach, filter, map, reduce, and
many more. Thanks to the internal iteration, streams support sequential
as well as parallel execution in a very convenient way. Here is an example:

List<Account> accountCol = … ;
accountCol
 .stream()
 .filter(a -> a.balance() > 1_000_000_00) // intermediate

 27

 .map(Account::balance) // intermediate
 .forEach(b -> {System.out.format("%d\t",b);}); // terminal

Using method stream(), we create a stream on top of a collection.
Different from a collection a stream does not contain any elements.
Instead it is a view to a collection that gives access to all elements in the
collection by means of bulk operations with internal iteration. A stream
has operations such filter(), map() and forEach(), as illustrated in the
code snippet above.

The filter() method takes a predicate, which is a function that takes an
element from the sequence and returns a boolean value. In our example
the predicate is the lambda expression a->a.balance()>1_000_000_00. This
predicate is applied to all elements in the sequence and only the "good"
elements, i.e. those for which the predicate returns true, appear in the
resulting stream.

The map() method takes a mapper, which is a function that takes an
element from the sequence and returns something else. In our example
the mapper maps the accounts to their respective balance using the
balance() method of class Account. The result is a stream of long values.

The forEach() method takes an arbitrary function, which receives an
element from the sequence as an argument and is not supposed to return
anything. In our example it prints the element.

Some of these methods (filter() and map() in the example) return a
stream; other ones (forEach() in our example) do not. The methods that
return streams are intermediate (aka lazy) operations, which means that they
are not immediately executed, but delayed until a terminal (aka eager)
operation is applied. In the example above, each bank account in the list
is accessed only once, namely when the terminal forEach operation is
executed. For each bank account the sequence of operations, i.e.,
filtering, mapping, and printing, is applied.

So far, the sequence of filter-map-forEach is executed sequentially, but it
is easy to enable parallel execution. We simply need to create a parallel
stream. Compare the sequential to the parallel version:

Sequential execution:

List<Account> accountCol = … ;
acc l ountCo
 .stream()
 .filter(a -> a.balance() > 1_000_000_00) // intermediate
 .map(Account::balance) // intermediate
 .forEach(b -> {System.out.format("%d\t",b);}); // terminal

28

Parallel execution:

List<Account> accountCol = … ;
accountCol
 .parallelStream()
 .filter(a -> a.balance() > 1_000_000_00) // intermediate
 .map(Account::balance) // intermediate
 .forEach(b -> {System.out.format("%d\t",b);}); // terminal

We create a parallel stream via the collection's parallelStream() method.
This is all we need to say and the rest is taken care of by the
implementation of the stream abstraction.

The extended collections framework with its streams and bulk operations
as outlined above is just one area of Java and its JDK where lambda
expressions are helpful and convenient. Independently of the JDK,
lambdas can be useful for our own purposes. Before we explore a couple
of "functional patterns" that necessitate lambdas we take a closer look at
the lambda language feature, its syntax and its properties.

Programming with Lambdas

Lambdas are a concept that stems from functional programming
languages and for this reason lambdas support a functional programming
style as opposed to the imperative, object-oriented style Java programmers
are used to. In the following we will first demonstrate the functional
programming style using a simple case study related to the JDK
collections and streams. Subsequently, we will explore an example of a
functional programming pattern known as the Execute-Around-Method
Pattern. fluent programming

Fluent Programming

In the following we intend to explore the declarative programming style
that lambda expressions and the JDK 8 streams support. We will be using
the following abstractions:

public interface Person {
 public enum Gender { MALE, FEMALE };
 public int getAge();
 public String getName();
 public Gender getGender();
}
public interface Employee extends Person {
 public long getSalary();
}

 29

public interface Manager extends Employee {
}
public interface Department {
 public enum Kind {SALES, DEVELOPMENT, ACCOUNTING,
 HUMAN_RESOURCES}
 public Department.Kind getKind();
 public String getName();
 public Manager getManager();
 public Set<Employee> getEmployees();
}
public interface Corporation {
 public Set<Department> getDepartments();
}

For illustration we want to retrieve all managers of all departments in a
corporation that have an employee older than 65.

Imperative Approach

Here is the traditional imperative approach:

/*
 * find all managers of all departments with an employee older
than 65
*/
Manager[] find(Corporation c) {
 List<Manager> result = new ArrayList<>();
 for (Department d : c.getDepartments()) {
 for (Employee e : d.getEmployees()) {
 if (e.getAge() > 65) {
 resu lt.add(d.getManager());
 }
 }
 }
 return result.toArray(new Manager[0]);
}

The implementation is straight forward. We retrieve all departments from
the corporation, then retrieve all employees per department, if we find an
employee older than 65 we retrieve the department's manager, and add it
to a result collection, which we eventually convert in the array that is
returned. declarative programming

Declarative Approach

Using streams and lambdas it would look like this:

/*
 * find all managers of all departments with an employee older
than 65

30

*/
Manager[] find(Corporation c) {
 return
 c.getDepartments().stream() // 1
 .filter(d -> d.getEmployees().stream() // 2
 .map(Employee::getAge) // 3
 .anyMatch(a -> a>65)) // 4
 .map(Department::getManager) // 5
 .toArray(Manager[]::new) // 6
}

In line //1, we retrieve all departments of the corporation via the
getDepartments method. The method yields a collection of Department
references, which we turn into a stream (of Department references).

In line //2, we use the filter operation on the stream of departments.
The filter operation needs a predicate. A predicate is a function that
takes an element from the stream (a Department in our example) and
returns a boolean value. The map operation applies the predicate to each
element in the stream and suppresses all elements for which the predicate
returns false. In other words, the stream returned from the map
operation only contains those elements for which the filter has been
returning true.

In our example we need a filter predicate that returns true if the
department has an employee older than 65. We provide the predicate as a
lambda expression. The lambda expression is fairly ambitious; it takes a
Department d, retrieves all employees of that department via the
getEmployees method, turns the resulting collection of employees into a
stream, maps each employee to its age, and eventually applies the
anyMatch operation.

In line //3, we use the map operation on the stream of employees. The
map operation needs a function that takes an element from the stream (an
Employee in that case) and returns another object of a potentially different
type (the age in our example). The mapper function is provided as the
method reference Employee::getAge. because the getAge method does
exactly what we need: it maps an employee to its age.

In line //4, we use the anyMatch operation of the stream of age values
return from the preceding map operation. The anyMatch operation takes
elements from the stream, applies a predicate to each element, and stops
as soon as an element is found for which the predicate returns true. We
supply the required predicate as another lambda that takes the age and
returns true if the age is greater than 65.

 31

The result of the filter operation and the lengthy lambda expression in line
//2 to //4 is the stream of all departments with an employee older than
65.

In line //5, we map each department to its respective manager. As the
mapper function we use the method reference Department::getManager.
The result is the stream of all managers of all departments with an
employee older than 65.

So far, none of the lambdas or referenced methods have been executed
because filter and map are intermediate operations.

In line //6, we convert the manager list into an array via the stream's
toArray method. The toArray method needs a generator, which takes a
size value and returns an array of the requested size. The generator in our
example is a constructor reference, namely the reference to the
constructor of manager arrays: Manager[]::new.

The two approaches look very different. The imperative style
intermingles the logic of iterating (the various nested loops) and the
application of functionality (retrieval of departments and employees,
evaluation of age values, collecting results). The declarative style, in
contrast, separates concerns. It describes which functionality is supposed
to be applied and leaves the details of how the functions are executed to
the various operations such as filter, map, anyMatch, and toArray. pipelining

Fluent Programming

The small code sample written in declarative style illustrates what is
known as fluent programming: the chaining of operations. It is a
programming technique where operations return a value that allows the
invocation of another operation. With fluent programming it is perfectly
natural to end up with one huge statement that is the concatenation of as
many operations as you like.

The JDK streams are designed to support fluent programming: all
intermediate operations return a result stream to which we can apply the
next operation in the chain until we apply a terminal operation as the tail
of the chain. The chaining of operations is a key feature of streams as it
enables all sorts of optimizations. For instance, the stream
implementation can arrange the execution of functions as a pipeline.
Instead of looping over all elements in the sequence repeatedly (once for
filter, then again for map, and eventually for toArray) the chain of filter-
mapper-collector can be applied to each element in just one pass over the
sequence.

32

Here is a brief illustration of the pipelining performed by the
implementation of streams:

String[] txt =
{"State","of","the","Lambda","Libraries","Edition"};
IntStream is = Arrays.stream(txt)
 .filter(s -> s.length() > 3)
 .map(s -> s.length())
 .forEach(l -> System.out.println(l));

In the code snippet we take a string array, turn it into a stream, pick all
strings longer than 3 characters, and map them to their length.

The source code suggests that first the filter is applied to all elements in
the stream and then the mapper is applied to all elements in a second pass
over the stream. In reality, the chain of filter and map operation is
postponed until the terminal forEach operation is executed. The terminal
operation triggers only a single pass over the sequence during which both
the filter and the mapper are applied to each element.

Diagram: Pipelined Execution of filter - map Chain

Creating such a pipeline per element does not only reduce multiple passes
over the sequence to a single pass, but also allows further optimizations.
For instance, the length method need not be invoked twice per string; the
repeated call can be eliminated by the JIT compiler.

Which style looks more pleasant and understandable is to the eye of the
beholder. Certainly the declarative code looks alien to Java programmer
unfamiliar with the declarative or fluent programming. After getting
accustomed to the declarative style it will probably appear equally pleasant
and understandable. execute-around-method

 33

Execute-Around-Method Pattern

So far, we have been exploring lambdas solely in the context of the JDK
collections and streams. However, lambda expressions are useful beyond
the JDK stream abstractions and internal iteration. They are convenient
and helpful in all places where operations take functionality as an
argument. One such occasion is the so-called Execute-Around-Method
pattern. It is a programming technique for eliminating code duplication.

Occasionally we encounter situations where it is required that some
boilerplate code must to be executed both before and after a method (or
more generally, before and after another piece of code that varies). Often
we simply duplicate the boilerplate code via copy-and-paste and insert the
variable functionality manually. Following the DRY (don't repeat
yourself) principle you might want to remove the code duplication via
copy-and-paste. For this purpose it is necessary to separate the boilerplate
code from the variable code. The boilerplate code can be expressed as a
method and the variable piece of code can be passed to this method as the
method's argument. This is an idiom where functionality (i.e. the variable
piece of code) is passed to a method (i.e. the boilerplate code). The
functionality can be conveniently and concisely be expressed by means of
lambda expressions.

Let us consider an example for the Execute-Around-Method pattern: use
of explicit locks. An explicit ReentrantLock (from package
java.util.lock) must be acquired and released before and after a critical
region of statements. The resulting boilerplate code looks like this:

class SomeClass {
 private ... some data ...
 private Lock lock = new ReentrantLock();
 ...
 public void someMethod() {
 lock.lock();
 try {
 ... critical region ...
 } finally {
 lock.unlock();
 }
 }
}

In all places where we need to acquire and release the lock the same
boilerplate code of "lock-try-finally-unlock" appears. Following the
Execute-Around-Method pattern we would factor out the boilerplate code
into a helper method:

class Utilities {
 public static void withLock(Lock lock, CriticalRegion cr) {

34

 lock.lock();
 try {
 cr.apply();
 } finally {
 lock.unlock();
 }
 }
}

The helper method withLock takes the variable code as a method
argument of type CriticalRegion:

 @FunctionalInterface
 public interface CriticalRegion {
 void apply();
 }

Note that CriticalRegion is a functional interface and hence a lambda
expression can be used to provide an implementation of the
CriticalRegion interface. Here is a piece of code that uses the helper
method withLock:

private class MyIntStack {
 private Lock lock = new ReentrantLock();
 private int[] array = new int[16];
 private int sp = -1;

 public void push(int e) {
 withLock(lock, () -> {
 if (++sp >= array.length)
 resize();
 array[sp] = e;
 });
 }

 ...
}

The boilerplate code is reduced to invocation of the withLock helper
method and the critical region is provided as a lambda expression. While
the suggested withLock method indeed aids elimination of code
duplication it is by no means sufficient.

Let us consider another method of our sample class MyIntStack: the pop
method, which returns an element from the stack and throws a
NoSuchElementException exception if the stack is empty. While the push
method did neither return nor throw anything the pop method has to
return a value and throws an exception. Neither is allowed by the
CriticalRegion's apply method: it has a void return type and no throws

 35

clause. The exception raised in the critical region of the pop method does
not cause any serious trouble; it is unchecked and need not be declared in
a throws clause. The lambda that we need for implementing the pop
method can throw it anyway. The return type, in contrast, causes trouble.
In order to allow for lambda expressions with a return type different from
void we need an additional CriticalRegion interface with an apply
method that returns a result. This way we end up with two interfaces:

 @FunctionalInterface
 public interface VoidCriticalRegion {
 void apply();
 }
 @FunctionalInterface
 public interface IntCriticalRegion {
 int apply();
 }

Inevitably, we also need additional helper methods.

class Utilities {
 public static void withLock(Lock lock,VoidCriticalRegion cr) {
 lock.lock();
 try {
 cr.apply();
 } finally {
 lock.unlock();
 }
 }
 public static int withLock(Lock lock, IntCriticalRegion cr) {
 lock.lock();
 try {
 return cr.apply();
 } finally {
 lock.unlock();
 }
 }
}

Given the additional helper method and functional interface the pop
method can be implemented like this:

private class MyIntStack {

 ...

 public int pop() {
 return withLock(lock, () -> {
 if (sp < 0)
 throw new NoSuchElementException();
 else
 return array[sp--];
 });
 }
}

36

In analogy to the return type you might wonder whether we need
additional functional interfaces for critical regions with different argument
lists. It turns out that arguments to the critical region are usually not an
issue. The lambda expression, which implements the critical region
interface, can access (implicitly) final variable of the enclosing context.
Consider the push method again; it takes an argument.

private class MyIntStack {
 private Lock lock = new ReentrantLock();
 private int[] array = new int[16];
 private int sp = -1;

 public void push(final int e) {
 withLock(lock, () -> {
 if (++sp >= array.length)
 resize();
 array[sp] = e;
 });
 }

 ...
}

The critical region lambda accesses the push method's argument, which is
either explicitly declared final or implicitly treated as such. As long as the
critical region only reads the argument and does not modify it there is no
need for additional helper methods or functional interfaces.

Wrap-Up

Programming with lambda expressions has two aspects:

 Using lambdas to define ad-hoc functionality that is passed to existing
operations, such as calling the streams' forEach, filter, map, and
reduce operations.

 Designing functional APIs that take lambda expressions as arguments. At
the heart of designing such APIs is the execute-around pattern. Even
the streams' forEach, filter, map, and reduce operations are example
of execute-around: they are loops that execute around the lambda that
we pass in.

 37

Default Methods

default method

Lambda expressions and method references are not the only features that
have been to the language in release 8 of Java. Java 8 also supports a
novel feature named default methods. In principle, default methods are
entirely unrelated to lambda expressions. It is just that they are the other
new language feature in Java 8. Both lambda expressions and default
methods are part of the Java Specification Request JSR 33513 and for this
reason we mention them in this tutorial. interface evolution

Interface Evolution

Default methods are needed for interface evolution. From the previous
sections on streams and bulk operation we know that the JDK has been
radically overhauled in Java 8. Reengineering such an existing framework
often involves the modification of the framework's interfaces. As we all
know, modifying an interface breaks all classes that implement the
interface. In other words, changing any of the interfaces in the JDK
collection framework would break millions of lines of code. This is
clearly not a viable option for a reengineering effort of the JDK. Hence
the JDK implementers had to figure a means of extending interfaces in a
backward compatible way and they invented default methods.

Default methods can be added to an interface without breaking the
implementing classes because default methods have an implementation.
If every additional method in an interface comes with an implementation
then no implementing class is adversely affected. Instead of providing
their own implementations of additional methods, the implementing
classes can simply inherit the implementations offered by the interface's
default methods. An implementing class may choose to override the
default implementation suggested by the interface. For this reason, the
default methods were initially called virtual extension methods; they can be
overridden like virtual methods inherited from a superclass.

Let us consider an example. As mentioned earlier, the JDK collections
have been extended for Java 8 and one of the changes is addition of a
forEach method to all collection in the JDK. Hence the JDK designers
wanted to add the forEach method to the Iterable interface, which is the
topmost interface of all collections in the JDK.

13 The specification request JSR 335 can be found at
http://openjdk.java.net/projects/lambda/.

38

http://openjdk.java.net/projects/lambda/

If this addition is made the traditional way (without default methods), the
extended Iterable interface looks like this:

public interface Iterable<T> {
 public Iterator<T> iterator();
 public void forEach(Consumer<? super T> consumer);
}

With this modification, every implementing class does no longer compile
because it lacks an implementation of the forEach method. The point of a
default method is that it supplies the missing implementation so that the
implementing classes need not be changed. Using a default method the
Iterable interface looks like this:

public interface Iterable<T> {
 public r<T> iterator(); Iterato
 public default void forEach(Consumer<? super T> consumer) {
 for (T t : this) {
 consumer.accept(t);
 }
 }
}

The obvious difference to a regular method in a class is the default
modifier. Otherwise, the default method has an implementation pretty
much like a regular method in a class.

In addition to the default modifier there is another notable difference
between regular methods in classes and default methods in interfaces:
methods in classes can access and modify not only their method
arguments but also the fields of their class. A default method in contrast
can only use its arguments because interfaces do not have state. (The
fields that you can define in an interface are not really state; they are
static final fields, i.e. symbolic names for compile-time constant values,
which the compiler eliminates during compilation.) All that the
implementation of a default method can build on are its own method
arguments and the other methods declared in the interface.

Take a look at the default implementation of the forEach method above.
To illustrates the principle we slightly rewrite it; we replace the for-each
loop by explicit use of an iterator. Rewritten the Iterable interface looks
like this.

public interface Iterable<T> {
 public r<T> iterator(); Iterato
 public default void forEach(Consumer<? super T> consumer) {
 Iterator<T> iter = iterator();
 while (iter.hasNext()) {
 consumer.accept(iter.next());
 }
 }

 39

}

The forEach method uses

 its Consumer argument, which represents the functionality that is to be
applied to each element in the collection, and

 the not yet implemented, abstract iterator method that the Iterable
interface declares.

Essentially, default methods are combinations of the other methods
declared in the same interface. multiple inheritance ambiguous inheritance

Multiple Inheritance and Ambiguities

Since classes in Java can implement multiple interfaces and each interface
can have default methods, the inherited methods may be in conflict with
each other if they have matching signatures. For instance, a class C might
inherit a method foo from both an interface I1 and an interface I2. It
raises the question: which method does class C inherit?

Diagram: Ambiguous Multiple Inheritance - Needs explicit resolution.

In such a situation the compiler cannot resolve the ambiguity and reports
an error. In order to enable the programmer to resolve the ambiguity
there is syntax for explicitly stating which method class C is supposed to
inherit. A resolution could look like this:

class C implements I1, I2 {
 public void foo() { I1.super.foo(); }
}

This is just one example of a conceivable ambiguous inheritance of
default methods. There are numerous further examples. In some
situation the compiler can resolve the situation because the language has a
resolution rule for that situation. In those few cases where the compiler

40

reports an error (like in the example above) there is syntax for explicit
resolution. If you are interested in a more elaborate discussion of multiple
inheritance in Java and/or details regarding the resolution of ambiguous
multiple inheritance of default methods, please consult the section on
"Default Methods" in the Lambda Reference document.

 41

Reference to Related Reading

Documentation & Specification

Lambda Expressions - Reference

This tutorial aims to provide a first glance at the language features that
were added to the Java programming language in release 8 of Java, namely
lambda expression, method reference, and default methods.
Comprehensive coverage of the details can be found in the "Lambda
Reference".
URL: to be provided

Streams - Tutorial & Reference

Equally interesting is the context for which these features were designed,
namely the streams and bulk operations in JDK 8. An overview is given
in the "Stream Tutorial", further details in the "Stream Reference".
URL: to be provided

Oracle's Java Tutorial: Section on "Lambda Expressions"

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.
html

JSR 335 "Project Lambda"

The official OpenJDK project page.
http://openjdk.java.net/projects/lambda/

Brian Goetz on "State of the Lambda", 4th edition, December 2011

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

Brian Goetz on "Translation of Lambda Expressions", April 2012

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html

Conference Presentations

Brian Goetz: The Road to Lambda, JavaOne 2012

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_
ID=4862

42

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://openjdk.java.net/projects/lambda/
http://cr.openjdk.java.net/%7Ebriangoetz/lambda/lambda-state-4.html
http://cr.openjdk.java.net/%7Ebriangoetz/lambda/lambda-translation.html
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4862&tclass=popup
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4862&tclass=popup

Brian Goetz: Lambda: A Peek Under the Hood, JavaOne 2012

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_
ID=6080

Mike Duigou & Stuart Marks: Jump Starting Lambda
Programming, JavaOne 2012

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_
ID=5089

Angelika Langer: Lambdas in Java 8, JFokus 2012
http://www.angelikalanger.com/Conferences/Slides/jf12_LambdasInJav
a8-1.pdf
(video) http://www.jfokus.se/jfokus/video.jsp?v=3072

Angelika Langer: Lambdas in Java 8, JavaZone 2012

(video) http://vimeo.com/49385450

Daniel Smith: Project Lambda in Java SE 8, Strange Loop,
September 2012

https://github.com/strangeloop/strangeloop2012/blob/master/slides/se
ssions/Smith-ProjectLambda(notes).pdf?raw=true
(video) http://www.infoq.com/presentations/Project-Lambda-Java-SE-8

Joe Darcy: On the Road to JDK 8, Devoxx 2012

https://blogs.oracle.com/darcy/resource/Devoxx/Devoxx2012_Project
Lambda.pdf

José Paumard: JDK 8 and lambdas, parallel programming made
(too ?) easy, Devoxx 2012

http://www.slideshare.net/slideshow/embed_code/15339485

Maurice Naftalin: Collections After Eight, Devoxx 2012

http://naftalin.org/maurice/professional/talks/cAfter8_devoxx2012.pdf

Tool support

EAP versions of Intellij IDEA

provide amazingly good support for lambda expressions and other parts
of the Java 8 feature set.
http://confluence.jetbrains.com/display/IDEADEV/IDEA+12+EAP

 43

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6080
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6080
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=5089
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=5089
http://www.angelikalanger.com/Conferences/Slides/jf12_LambdasInJava8-1.pdf
http://www.angelikalanger.com/Conferences/Slides/jf12_LambdasInJava8-1.pdf
http://www.jfokus.se/jfokus/video.jsp?v=3072
https://github.com/strangeloop/strangeloop2012/blob/master/slides/sessions/Smith-ProjectLambda(notes).pdf?raw=true
https://github.com/strangeloop/strangeloop2012/blob/master/slides/sessions/Smith-ProjectLambda(notes).pdf?raw=true
http://www.infoq.com/presentations/Project-Lambda-Java-SE-8
https://blogs.oracle.com/darcy/resource/Devoxx/Devoxx2012_ProjectLambda.pdf
https://blogs.oracle.com/darcy/resource/Devoxx/Devoxx2012_ProjectLambda.pdf
http://www.slideshare.net/slideshow/embed_code/15339485
http://naftalin.org/maurice/professional/talks/cAfter8_devoxx2012.pdf
http://confluence.jetbrains.com/display/IDEADEV/IDEA+12+EAP

Nightly builds of NetBeans 8

provide experimental lambda support.
http://bertram2.netbeans.org:8080/job/jdk8lambda/lastSuccessfulBuild/
artifact/nbbuild/

Miscellaneous

Angelika Langer & Klaus Kreft, The Closure Debate, June 2008

An overview of the debate that led to the development of lambda
expressions for Java.
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-closures.html
for an overview

Mark Reinhold, Closures for Java, November 2009

A blog that announces Project Lambda and explains why it is needed.
https://blogs.oracle.com/mr/entry/closures

Brian Goetz, Interview on Project Lambda, in the Java Magazine for
September/October 2012

(either register (free) as a subscriber to download the magazine as PDF, or
get it via the Newsstand app on iPhone or iPad
http://www.oraclejavamagazine-digital.com/javamagazine/20120910
#pg1

Anton Arhipov, Blog at Zero Turnaround on "Java 8: The First
Taste of Lambdas", February 2013

A blog entry that explores how lambdas are represented at the runtime
and what bytecode instructions are involved during method dispatch.
http://zeroturnaround.com/labs/java-8-the-first-taste-of-lambdas/#!/

44

http://bertram2.netbeans.org:8080/job/jdk8lambda/lastSuccessfulBuild/artifact/nbbuild/
http://bertram2.netbeans.org:8080/job/jdk8lambda/lastSuccessfulBuild/artifact/nbbuild/
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-closures.html%20for%20an%20overview
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-closures.html%20for%20an%20overview
https://blogs.oracle.com/mr/entry/closures
http://www.oraclejavamagazine-digital.com/javamagazine/20120910%23pg1
http://www.oraclejavamagazine-digital.com/javamagazine/20120910%23pg1
http://zeroturnaround.com/labs/java-8-the-first-taste-of-lambdas/%23!/

Appendix

Source Code of Fluent Programming Case Study

Abstractions Used in the Example

public interface Person {
 public enum Gender { MALE, FEMALE };
 public int getAge();
 public String getName();
 public Gender getGender();
}
public interface Employee extends Person {
 public long getSalary();
}
public interface Manager extends Employee {
}
public interface Department {
 public enum Kind {SALES, DEVELOPMENT,
 ACCOUNTING, HUMAN_RESOURCES}
 public Department.Kind getKind();
 public String getName();
 public Manager getManager();
 public Set<Employee> getEmployees();
}
public interface Corporation {
 public Set<Department> getDepartments();
}

Imperative & Sequential

/*
 * find all managers of all departments with an employee
 * older than 65
*/
Manager[] find(Corporation c) {
 List<Manager> result = new ArrayList<>();
 for (Department d : c.getDepartments()) {
 for (Employee e : d.getEmployees()) {
 if (e.getAge() > 65) {
 resu lt.add(d.getManager());
 }
 }
 }
 return result.toArray(new Manager[0]);
}

 45

Declarative & Sequential

/*
 * find all managers of all departments with an employee
 * older than 65
*/
Manager[] find(Corporation c) {
 return
 c.getDepartments().stream() // 1
 .filter(d -> d.getEmployees().stream() // 2
 .map(Employee::getAge) // 3
 .anyMatch(a -> a>65)) // 4
 .map(Department::getManager) // 5
 .collect(Collectors.toList()) // 6
 .toArray(new Manager[0]); // 7
}

Declarative & Parallel

/*
 * find all managers of all departments with an employee
 * older than 65
*/
Manager[] find(Corporation c) {
 return
 c.getDepartments().parallelStream() // 1
 .filter(
 d -> d.getEmployees().parallelStream() // 2
 .map(Employee::getAge) // 3
 .anyMatch(a -> a>65)) // 4
 .map(Department::getManager) // 5
 .collect(Collectors.toList()) // 6
 .toArray(new Manager[0]); // 7
}

Imperative & Parallel

/*
 * find all managers of all departments with an employee
 * older than 65
*/
 private static Manager[] find(Corporation c) {
 class FinderTask extends RecursiveTask<List<Manager>> {
 private final Department[] departments;
 private final int from, to;

46

 private final int targetBatchSize = 2;

 public FinderTask(Department[] departments,
 int from, int to) {
 this.departments = departments;
 this.from = from;
 this.to = to;
 }
 private List<Manager> findSequentially() {
 List<Manager> result = new ArrayList<>();
 for (int i=from;i<to;i++) {
 Department d = departments[i];
 for (Employee e : d.getEmployees()) {
 if (e.getAge() > 65) {
 result.add(d.getManager());
 }
 }
 }
 return result;
 }
 public List<Manager> compute() {
 if (to-from < targetBatchSize)
 return findSequentially();
 int half = (to-from)/2;
 FinderTask task1
 = new FinderTask(departments,from,from+half);
 FinderTask task2
 = new FinderTask(departments,from+half,to);
 invokeAll(task1,task2);
 try {
 List<Manager> result = task1.get();
 result.addAll(task2.get());
 return result;
 } catch (final InterruptedException |
 ExecutionException e) {
 throw new RuntimeException(e);
 }
 }
 }
 Department[] departments
 = c.getDepartments().toArray(new Department[0]);
 return ForkJoinPool
 .commonPool()
 .invoke(new FinderTask(departments,0,
 departments.length))
 .toArray(new Manager[0]);
 }

 47

Source Code of Execute-Around-Method Pattern
Case Study

Helper Methods and Functional Interfaces

public class Utilities {
 @FunctionalInterface
 public static interface VoidCriticalRegion {
 void apply();
 }
 public static void withLock(
 Lock lock,
 VoidCriticalRegion region) {
 lock.lock();
 try {
 region.apply();
 } finally {
 lock.unlock();
 }
 }
 @FunctionalInterface
 public static interface IntCriticalRegion {
 int apply();
 }
 public static int withLock(
 Lock lock,
 IntCriticalRegion region) {
 lock.lock();
 try {
 return region.apply();
 } finally {
 lock.unlock();
 }
 }
 @FunctionalInterface
 public static interface VoidIOECriticalRegion {
 void apply() throws IOException;
 }
 public static void withLockAndIOE(
 Lock lock,
 VoidIOECriticalRegion region)
 throws IOException {
 lock.lock();
 try {
 region.apply();
 } finally {
 lock.unlock();
 }
 }
}

48

IntStack Class

public class IntStack {
 private Lock lock = new ReentrantLock();
 private int[] array = new int[16];
 private int sp = -1;

 private void resize() {
 // todo later - for now throw index out of bounds
 array[sp] = 0;
 }
 public void push(int e) {
 withLock(lock, () -> {
 if (++sp >= array.length)
 resize();
 array[sp] = e;
 });
 }
 public int pop() {
 return withLock(lock, () -> {
 if (sp < 0)
 throw new NoSuchElementException();
 else
 return (array[sp--]);
 });
 }
}

 49

Index

@
@FunctionalInterface · 19

A
ad-hoc functionality · 9
ambiguous inheritance · 41
anonymous inner class · 9, 11, 14

vs. lambda expression · 9, 21
anonymous method · 9

B
binding · see variable binding
bulk operation

intermediate · see
terminal · see terminal stream

operation
bulk operations · 25

parallel · 25

C
closure · see lambda expression
closure debate · 8
collection framework extension · see

bulk operations

D
declarative programming · 13, 14, 31
default method · 39

E
effectively final variable · 23
execute-around-method pattern · 34
external iteration · 26, 27

F
filter() · 29
filter-map-reduce · see bulk operations
fluent programming · 30, 33
forEach() · 29
function · 12, 15

difference to method · 12
impure · 15
pure · 13, 14
vs. method · 12, 17

functional interface · 18
annotation · see

@FunctionalInterface
functional programming · 12, 13

I
imperative programming · 13, 14, 31

interface evolution · 39
internal iteration · 26, 27
iteration

external · 26, 27
internal · 26, 27

L
lambda · see lambda expression

calculus · 9
lambda expression · 9

representation · 16, 22, see runtime
representation

syntax · 21
translation · see runtime

representation
vs. anonymous inner class · 9, 21

lambda object · 17
lexical scope · 24

M
map() · 29
meaning of this/super · see lexical

scope
method · 12, 14, 15

difference to function · 12
vs. function · 12, 17

method & function
difference · 12

method reference · 11
multicore hardware · 8
multiple inheritance · 41

ambiguous · 41

O
object-oriented programming · 13

P
parallel stream · 30
pipeline · 33
poly expression · 20
procedural programming ·
programming language

functional · see functional
programming

imperative · see imperative
programming

object-oriented · see object-
oriented programming

procedural · see procedural
programming

50

 51

pure functional · see functional
programming

pure function · 13, 14

R
runtime representation · 22, see

lambda expression, representation

S
SAM type · see functional interface
scope · 24

lexical · 24
stream · 26

parallel · 30
sequential · 28

stream operation
parallel · 29

streams · 28

T
target type · 18
translation strategy · see runtime

representation
type inference · 18
type of lambda expression · see target

type

V
variable

binding · 22
capture · 23
effectively final · 23

variable binding · 22
variable capture · 22
virtual extension method · see default

method

	Table of Contents
	Questions & Answers
	Lambda Expressions
	Background and a Bit of Trivia
	What are Lambda Expressions?
	Lambda Expressions vs. Anonymous Inner Classes
	Methods vs. Functions
	Representation of Lambda Expressions
	Functional Interfaces

	Comparing Lambdas to Anonymous Inner Classes
	Syntax
	Runtime Overhead
	Variable Binding
	Scoping

	Why do we need lambdas?
	Internal vs. External Iteration
	Streams and Bulk Operations

	Programming with Lambdas
	Fluent Programming
	Imperative Approach
	Declarative Approach
	Fluent Programming

	Execute-Around-Method Pattern
	Wrap-Up

	Default Methods
	Interface Evolution

	Reference to Related Reading
	Documentation & Specification
	Conference Presentations
	Tool support
	Miscellaneous

	Appendix
	Source Code of Fluent Programming Case Study
	Source Code of Execute-Around-Method Pattern Case Study

	Index

