
Lambda expressions in Java:

a compiler writer's perspective

Maurizio Cimadamore

Type-system engineer, Oracle Corporation

The following is intended to outline our general

product direction. It is intended for information

purposes only, and may not be incorporated into any

contract. It is not a commitment to deliver any

material, code, or functionality, and should not be

relied upon in making purchasing decisions.

The development, release, and timing of any

features or functionality described for Oracle’s

products remains at the sole discretion of Oracle.

BACKGROUND

Where are we?

• Multicore hardware is now the default

– Moore’s law delivering more cores, not faster cores

• We must learn to write software that parallelizes

gracefully

– Right now, the serial code and the parallel code for a given

operation don’t look anything like each other

– Fork-join (added in Java SE 7) is a good start, but not

enough

Problem: external iteration

List<Student> students = ...

double highestScore = 0.0;

for (Student s : students) {

 if (s.gradYear == 2011) {

 if (s.score > highestScore) {

 highestScore = s.score;

 }

 }

}

L Client controls iteration

L Inherently serial: iterate from beginning to end

L Not thread-safe (shared mutable variable)

Internal iteration w/ lambdas

SomeCoolList<Student> students = ...

double highestScore =

 students.filter(Student s -> s.getGradYear() == 2011)

 .map(Student s -> s.getScore())

 .max();

J Library-based iteration

J Traversal might be done in parallel

J Thread-safe (stateless)

J More readable and less error prone!

Why closures for Java?

• Provide libraries a path to multicore
– Today, developer’s primary tool for computing over

aggregates is the for loop – which is fundamentally serial

– Parallel-friendly APIs need internal iteration

– Internal iteration needs a concise code-as-data mechanism

• Empower library developers
– Closures are useful for all kinds of libraries, serial or parallel

– Enable a higher degree of cooperation between libraries and
client code

• It’s about time!
– Java is the lone holdout among mainstream OO languages

at this point to not have closures

– Adding closures to Java is no longer a radical idea

LAMBDA EXPRESSIONS

Lambda Expressions

• One construct, several syntactic forms:

LambdaExpression:

 TypeParametersopt LambdaParameters '->' LambdaBody

LambdaExpressionAfterCast:

 LambdaParameters '->' LambdaBody

LambdaParameters:

 Identifier

 '(' InferredFormalParameterList ')'

 '(' FormalParameterListopt ')'

InferredFormalParameterList:

 Identifier

 InferredFormalParameterList ',' Identifier

LambdaBody:

 Expression

 Block

Explicit vs. Implicit parameters

• Lambda parameter types can be omitted

– Compiler to the rescue: implicit parameters will be inferred

from the context

– Keywords only allowed on explicit parameters

explicit implicit

(int x) -> x+1 x -> x+1

(int x, int y) -> x+y (x,y) -> x+y

(final String msg) -> { log(msg); } msg -> { log(msg); }

Expression vs. Statement

if (…)

1 + 2

a.foo() true ? 1 : 2

String s = …

for (…)

Foo.class a++

a = foo

Expression lambdas

• Expression lambda

– Body is an expression which is also the return value of the

lambda

 expr

int x -> x*x

(int x,int y)-> x + y

Object o -> o.toString()

Statement lambdas

• Statement lambda

– Body is an ordinary block

– A statement lambda can return (where return means ‘local’

return)

 stmt

boolean c-> { assert c; }

(int x, int y)-> { if (cond) return x; return y; }

Object o-> { System.out.println(o); }

Expression or statement?

• An expression statement can be used in both

statement and expression lambdas

– Semantics could depend on the context

– Syntax helps to disambiguate (no semi-colon tricks!)

expr (Collection<?> c, Object o) -> c.add(o);

stmt (Collection<?> c, Object o) -> { c.add(o); }

To return or not to return?

• A lambda might/might not have a return value

– A statement lambda that does not return is void-compatible

– A statement lambda that has one or more return values is

value-compatible

– An expression lambda is always value-compatible

void
(String s) -> { System.out.println(s); }

(boolean cond) -> { if (cond) return; }

value
(String s)-> s

(String s)-> { return s; }

Don't call me, I'll call you!

• A lambda expression can be executed when the

scope in which it has been created is no longer

available in the execution stack

– This can happen if the lambda is saved and then executed at

a later stage (laziness)

• Implications:

– Restrictions on local variable capture

– Restrictions on jumps

Local variable capture

• Lambda expressions can refer to effectively final local

variables from the enclosing scope

– An effectively final variable meets the requirements for final

variables (i.e. assigned once), even if not declared as such

– Close over values, not over variables!

O

long before = 1;

... (File p) -> p.lastModified() <= before;

before = 3;

P
long before = 1;

... (File p) -> p.lastModified() <= before;

Jumps

• break/continue are allowed if the target is within

the lambda expression

– Non-local jumps are disallowed

O

for (Object o : elems) {

… ()-> { break; };

}

P

()-> switch(s) {

 case "Hello!": break;

}

Correspondence Principle

• For a given expression expr, lambda expr should

be semantically equivalent.

• Implications:

– Shadowing

– Meaning of names (i.e. this)

[…] the underlying semantic notions for both parameter and definition

mechanisms are simply expression evaluation (of an actual parameter or

the right-hand side of a definition) and identifier binding (of a formal

parameter or the left-hand side of a definition.) […] For any parameter

mechanism, an analogous definition mechanism is possible, and vice

versa. This is known as the principle of correspondence.

from R. D. Tennent’s Principle’s of Programming Languages (1981)

Scope of lambda parameters

• Lambda parameters share same scope with locals

variables defined in the enclosing scope

– Error when lambda declares parameter with same name as

a local in the enclosing scope

O

void shadowTest(Object i) {

... (int i) -> i*i;

}

P

void shadowTest(Object i) {

... (int i2) -> i2*i2;

}

Meaning of names

• The meaning of names are the same inside the

lambda as outside

– this refers to the enclosing object, not the lambda itself

– Easier than inner classes:

no ambiguity between enclosing vs. inherithed symbols

P

class Foo {

 ... () -> { Foo f = this; };

}

P

class Foo {

 ... () -> toString();

}

METHOD REFERENCES

Internal iteration w/ lambdas (reloaded)

SomeCoolList<Student> students = ...

double highestScore =

 students.filter(Student s -> s.getGradYear() == 2011)

 .map(Student s -> s.getScore())

 .max();

J Library-based iteration

J Traversal might be done in parallel

J Thread-safe (stateless)

J More readable and less error prone!

K Accidental horizontal verbosity

Internal iteration w/ method references

SomeCoolList<Student> students = ...

double highestScore =

 students.filter(Student s -> s.getGradYear() == 2011)

 .map(Student::getScore)

 .max();

J Library-based iteration

J Traversal might be done in parallel

J Thread-safe (stateless)

J More readable and less error prone!

J Reuse of existing code!

Method References

• Syntactic shortcut for creating a lambda expression

out of an existing method/constructor

– Many flavors of method references:

MethodReference:

 ExpressionName '::' NonWildTypeArgumentsopt Identifier

 Primary '::' NonWildTypeArgumentsopt Identifier

 ReferenceType '::' NonWildTypeArgumentsopt Identifier

ConstructorReference:

 ClassType '::' NonWildTypeArgumentsopt 'new'

Overview of Method References

toplevel type inner type expression

Static

identifier
static method reference

Instance

identifier
unbound method reference

bound method

reference

new
toplevel constructor

reference

inner constructor

reference
N/A

Qualifier Expression

N
a
m

e

Desugaring method references

• Three kinds of method references

– Static - access static methods

– Bound - access instance method explicitly

– Unbound - access instance method implicitly

:: l

static Logger::log (String msg) -> Logger.log(msg)

bound getPerson()::name
 final Person p = getPerson();

 () -> p.name()

unbound Person::name (Person p) -> p.name()

Desugaring constructor references

• Two kinds of method references

– Toplevel - access toplevel constructor

– Inner - access inner constructor implicitly

• Desugaring of inner constructor reference depends

on whether an enclosing instance is in scope!

 :: l

toplevel Person::new (String name) -> new Person(name)

inner1
Inner::new () -> Outer.this.new Inner();

inner2 Inner::new (Outer o) -> o.new Inner();

FUNCTIONAL INTERFACES

Not all expressions are created equal!

new ArrayList<>()

100

e.toString()

{ 1, 2 }

?

Standalone expressions

new ArrayList<>()

100

e.toString()

int

String

{ 1, 2 }

Poly expressions

new ArrayList<>()

100

e.toString()

ArrayList<String>

ArrayList<Integer>

int

String

{ 1, 2 } double[]

int[]

Lambda and method references as

poly expressions

• Lambda expression/method references are just new

kinds of poly expressions

– The type of lambda/method reference cannot be computed

in isolation (i.e. w/o a target type)

– A lambda/method reference can be used whenever a

compatible functional interface is expected!

l Runnable r = () -> { System.out.println("hi"); };

:: Runnable r = System::gc;

Functional interfaces

A functional interface is an interface that has just one

abstract method, and thus represents a single function

contract. In some cases, this "single" method may take

the form of multiple abstract methods with override-

equivalent signatures inherited from superinterfaces; in

this case, the inherited methods logically represent a

single method.

from the Project Lambda EDR

Where are my arrow types?

• For years, we’ve used single-method interfaces to

represent functions and callbacks

– A functional interface is an interface with one method

• Functional interfaces provide an hook to switch

between nominal/structural type information:

– A functional interface is just a (nominal) interface type…

– Each functional interface is associated with a functional

descriptors that carries structural type information:

• Argument types

• Return type

• Thrown types

Functional interfaces in the JDK

Interface Descriptor

Comparator<T> boolean compare(T x, T y);

FileFilter boolean accept(File x);

Callable<T> T call();

Runnable void run();

ActionListener void actionPerformed(ActionEvent e);

Lambda as functional descriptors

• A lambda l is said to be compatible with a functional

descriptor F iff:

– Parameter types in l matches the parameter types in F

– Return value(s) in l is compatible with the return type of F

– The checked exceptions thrown by l are a subset of the

exceptions declared by F

• Implicit lambda parameters are inferred from

argument types in F

Lambda as functional descriptors

P FileFilter ff = (File f) -> f.isDirectory();

P Comparator<String> cs = (s1,s2) -> s1.length() - s2.length();

O Runnable r = () -> { throw new Exception(); }

O Comparator<String> cs = (s1,s2)-> true;

O FileFilter ff = (String s)-> s.endsWith("Hello!");

The long arm of void-compatibility

• If return type of the functional descriptor is void, the

lambda must be void-compatible!

P Runnable r = () -> { System.out.println("Hello!"); }

O Runnable r = () -> System.out.println("Hello")!

TARGET-TYPING IN METHOD

CONTEXT

Internal iteration w/ lambdas and

method references (reloaded)
SomeCoolList<Student> students = ...

double highestScore =

 students.filter(Student s -> s.getGradYear() == 2011)

 .map(Student::getScore)

 .max();

J Library-based iteration

J Traversal might be done in parallel

J Thread-safe (stateless)

J More readable and less error prone!

J Reuse of existing code!

K Redundant type-information

Internal iteration w/ lambdas, method

references and target-typing
SomeCoolList<Student> students = ...

double highestScore =

 students.filter(s -> s.getGradYear() == 2011)

 .map(Student::getScore)

 .max();

J Library-based iteration

J Traversal might be done in parallel

J Thread-safe (stateless)

J More readable and less error prone!

J Reuse of existing code!

J Don't repeat yourself!

Target-typing in Java

• Lambda expressions/method references are a new

form of poly expressions

– They cannot be type-checked w/o a target type

• This is a problem as the target-type information is not

always propagated (as in JDK 7)

P List<String> ls = new ArrayList<>();

O List<String> ls = true ? new ArrayList<>() : new ArrayList<>();

O
void m(List<String> ls) { ... }

m(new ArrayList<>());

Consistent use of target-typing

• Goal: it should be possible to use a lambda/method

reference in all contexts where a target-type exists

= squareMapper = x -> x*x;

[] Mapper<Integer>[] mappers = { x -> x*x, x -> x+x; }

return return x -> x*x;

() numbers.map(x -> x*x)

? square ? x -> x*x : x -> x+x;

Overload resolution in JDK 7

Generic

declaration
Argument

expressions

Target-type

Applicable?

Inferred

types

Inference

Inference

Type of

expression

Types of

arguments

Target-typing and overload resolution

• Lambda/method reference in method context can be

checked more than once

– Speculative type-checking - the lambda/method reference is

type-checked against each possible target-type

• Presence of multiple overload candidates

– checking of lambda/method reference is used to discard

some candidates

• Structural most specific check

– When multiple compatible functional interfaces found

• Let go of the assumption that we must know

argument types ahead of overload resolution!

Overload resolution revisited

Generic

declaration
Argument

expressions

Target-type

Applicable?

Inferred

types

Inference

Inference

Type of

expression

Types of

arguments

Speculative type-checking

• Lambda/method reference in method context can be

checked more than once

– Speculative type-checking - the lambda/method reference is

type-checked against each possible target-type

m(x > x.toString());)

? void m(SAM1 s1) String apply1(Integer i);

? void m(SAM2 s2) Integer apply2(Integer i);

? void m(SAM3 s3) Object apply3(Integer i);

The art of pruning

• Overload candidates are filtered using the information

derived when checking lambda/method reference

– If an overloaded method does not satisfy those constraints, it

is dropped from the applicable set

m(x > x.toString());)

? void m(SAM1 s1) String apply1(Integer i);

O void m(SAM2 s2) Integer apply2(Integer i);

? void m(SAM3 s3) Object apply3(Integer i);

Structural most specific

• When multiple overload candidates are available, a

most specific signature is selected

– If formals are functional interfaces, a full structural check is

performed on the underlying descriptors

m(x > x.toString());)

P void m(SAM1 s1) String apply1(Integer i);

O void m(SAM2 s2) Integer apply2(Integer i);

O void m(SAM3 s3) Object apply3(Integer i);

Target-typing and generic methods

• An overload candidate could be a generic method

– The target-type might depend on yet-to-infer inference

variables!

• Lambda expressions in method context cannot be

type-checked because of the presence of inference

variables in the target-type

– Such lambdas are said to be stuck

• Possible solutions (still under consideration):

– Inference errors

– Wait for lambda to become unstuck

A cycle too far?

• It looks like there is cycle in the inference machinery:

– The compiler needs type-information on actual arguments in

order to proceed with method type-inference

– The compiler needs a fully instantiated target-type in order to

type-check certain actual arguments

m(x>1, "Hello!");

O <Z> void m(SAM<Z> s, Z z)

interface SAM<X> {

 int apply(X i);

}

Out-of-order method checking

• Alternatively, let go of the assumption that arguments

are checked from left to right

– i.e. instantiate all inference variables in the target-types first

using constraints derived from unstuck arguments

– As arguments become unstuck, type-check them until no

further progress can be made

m(x>1, "Hello!");

P <Z> void m(SAM<Z> s, Z z)

interface SAM<X> {

 int apply(X i);

}

WRAP UP

Project Lambda / JSR-335 Status

• Project Lambda started December 2009

– Explorations done through OpenJDK

• JSR-335 filed November 2010

– Prototype compiler developed in OpenJDK

• Current status

– EDR draft #1 now public, available at

http://www.jcp.org/en/jsr/summary?id=335

– Compiler prototype binaries available at

http://jdk8.java.net/lambda/

• Includes VM support for extension method dispatch!

• Feedback is welcome!

Conclusion

• Adding closures to Java is key to promote fluent,

functional-oriented code that is multicore-ready

• One goal, two constructs

– Lambda expressions

– Method references

• Functional interface allows smooth interoperability

with existing code

• The devil is in the details

– Evolving an existing language is always hard – lots of

interactions with existing features

– Novel target-typing support requires overload

resolution/inference overhaul

Maurizio Cimadamore

Type-system engineer, Oracle Corporation

