
Angelika Langer
Trainer/Consultant

http://www.AngelikaLanger.com/

Concurrent Java

Java Programming in
a

Multicore World

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (2)

objective

• take look at current trends in concurrent programming
• explain the Java Memory Model
• discuss future trends such as lock-free programming

and transactional memory

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (3)

speaker's relationship to topic

• independent trainer / consultant / author
– teaching C++ and Java for 10+ years
– curriculum of a dozen challenging courses
– co-author of "Effective Java" column
– author of Java Generics FAQ online
– Java champion since 2005

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (4)

agenda

• history of concurrency & concurrency
trends

• synchronization and memory model
• fight the serialization – improve scalability
• future trends

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (5)

CPU development

• Moore’s law:
number of transistors doubles every two years

– since 2004: more cores
– until 2004: faster ones
– main reason: heat

• 2 cores became
standard 2007
– 6-12 in 2009 (AMD)

• more complex caches
– hierarchy

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (6)

CPU development implies

• new CPU will not solve your performance problems
– if your program does not scale (well) to multiple cores
– i.e.: find (and fight) the serialization

• existing programs
– undetected errors might pop up
– multi-core + caching uncovers synchronization problems

• Java environment
– more and more complex work for

the byte code compiler, and
the JIT compiler

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (7)

Java history – initial MT support

• mostly built into the language (not into the library)
– synchronized block/method – lock in every object
– Object.wait(), Object.notify() – condition in every object
– ...

• mainly low level functionality
– no thread pool, no blocking queue, …

• memory model
– chapter 17 of the Java Language Specification: Threads and Locks

hard to understand,
incomplete,
violated by JVM implementations

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (8)

Java history – JDK 5.0 MT support

• rework of existing locks and conditions
– into the library: java.util.concurrent.locks

– extended functionality
timeout for existing locks
new locks: read-write-lock

– approach changed: library is more flexible than language
think of C

• high-level abstractions
– thread pool: ThreadPoolExecuter, …
– synchronizers: BlockingQueue, CyclicBarrier, …
– support for asynchronous programming: Future, …

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (9)

(cont.)

• support for lock free programming
– low-level

abstractions from java.util.concurrent.atomic
– high-level

‘concurrent’ collections: ConcurrentHashMap, …

• reworked memory model
– cleared up what volatile and final mean in a MT context
– defines requirements regarding atomicity, visibility and ordering

of operations

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (10)

Java keeps up to …

• … the needs and requirements of the changing MT uses

• more people build MT programs
– MT patterns and idioms become common knowledge
– need for high-level abstractions

• more people build Java MT programs
for multiprocessor platforms

– need for clear and exact memory model
– wish for better scaling MT abstractions

need for lock free programming

• former niche becomes main stream with multi core
CPUs

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (11)

architecture history – mid 90ies

• no or insufficient support of threads
– on many proprietary unices thread implementation in the user

space:
blocking read() in one thread blocked all threads of the process

– Java started with a similar model: green threads
non-preemptive, sometimes obscure behavior

• threads used to structure programs –
not to achieve more through put

– scalability was not an issue, multi-processor systems were rare
multi-core unknown

– user space threads scalability limited with multi-processors

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (12)

architecture history – since then

• trend to asynchronous and parallel computing
to increase throughput

• Java examples
– asynchronous I/O

1.4 socket, 5.0 sockets + SSL, 7.0 sockets + file system
essential: frees you from one thread per socket
but: program structure gets more complex and technical

– JMS introduced 2001
much later than RMI which was part of Java from the beginning
effect: EJB became message-driven beans

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (13)

(cont.)

• general example:
– AJAX (Asynchronous JavaScript and XML)
– means: user interaction decoupled from HTTP requests
– traditionally

you select a link / push a button / etc. , and
a new page gets loaded into your browser

– AJAX example: Google Maps

user interaction

e.g. pull the map
to the left

map elements are
asynchronously
pulled from the server
via Javascript

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (14)

more AJAX

• Google Maps
– user interaction decoupled from HTTP requests

• more asynchronicity
– HTTP push via Ajax

signal an asynchronous event in the browser
e.g. incoming telephone call

• alternatives:
– Christian Gross: Ajax Pattern and Best Practices,

chapter 8: Persistent Communication Pattern
– Alex Russell: Comet – Low Latency Data for the Browser

http://alex.dojotoolkit.org/?p=545

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (15)

(cont.)

• both solutions boil down to
a ‘long-lived’ HTTP request from the browser

• persistent communication / long polling / hybrid polling:
– request lives, until the event occurs

or a ‘long’ timeout occurs (5-10 minutes)
– event is signaled in the response

or the timeout
– new request to poll the next event

• comet style / HTTP streaming:
– request lives, until the client goes away
– all data is send from the server to the client in the same response

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (16)

a small problem

• traditional servlet programming
– one thread:

receives HTTP request
determines what has to be done
gathers the data (and renders the new page)
sends all this back to the client in a response

• what about an long-lived open HTTP request ?
– that waits for an external event

e.g. the incoming telephone call

• allocates a thread until
the event occurs / client goes away !

– with 50000 users on the server !

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (17)

asynchronous web servers

• decouple the request from the response

• Jetty 6 Continuation
Continuation.suspend(), Continuation.resume()
http://docs.codehaus.org/display/JETTY/Continuations

• Tomcat 6.0
Comet module allows to process I/O asynchronously
http://tomcat.apache.org/tomcat-6.0-doc/aio.html

• Java standard for asynchronous web server
JSR 315 = Servlet 3.0 specification
scheduled finish by the end of 2008

• underlying concept: asynchronous I/O

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (18)

more and more asynchronicity

• not only web server – other servers too

• SOA (service oriented architecture)
– service -> service -> service …
– you don’t want to have a waiting thread in each of the server
– i.e.

asynchronous handling of the request
MOM (message oriented middleware), means often JMS in Java

• all this means:
– you need multiple threads and some synchronization of these

to tie the external asynchronous channels to your program

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (19)

agenda

• history of concurrency & concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (20)

motivation - why does JMM matter?

• JMM = Java Memory Model

• understanding JMM reveals errors in existing programs
– undetected errors might pop up
– multi-core + caching uncovers synchronization problems

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (21)

Java Memory Model (JMM)

• specifies minimal guarantees given by the JVM
– about when writes to variables become visible to other threads

• is an abstraction on top of hardware memory models

Java Memory Model
• threads read and write to variables

Hardware Memory Model
• processors read and write to caches,

registers, main memory

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (22)

Java memory model

• JMM resembles abstract SMP (symmetric multi processing)
machine

• key ideas:
– all threads share the main memory
– each thread uses a local working memory
– flushing or refreshing working memory to/from main memory

must comply to JMM rules

CPU

cache

CPU

cache

main memory

bus

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (23)

Java memory model

JMM rules address 3 intertwined issues:

• atomicity
– which operations must have indivisible effects ?

• visibility
– under which conditions are the effects of operations taken by one

thread visible to other threads ?

• ordering
– under which conditions can the effects of operations appear out

of order to any given thread ?

"operations" means:
– reads and writes to memory cells representing Java variables

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (24)

JMM in practice

• examples:

atomicity
– access to variables of primitive type (except long/double) are atomic
– execution of operations in a synchronized block is atomic

visibility
– values written to a volatile variable are visible to other threads

ordering
– effects of operations in a synchronized block appear in order
– accesses to volatile variables appear in order

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (25)

sequential consistency

• sequential consistency is a convenient (yet unrealistic)
mental model:
– imagine a single order of execution of all programm operations

(regardless of the processors used)
– each read of a variable will see the last write in the execution

order

• JMM does NOT guarantee sequential consistency
– reordering is generally permitted
– specific rules for synchronization, thread begin/end, volatile and

final variables

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (26)

hardware memory models

• JVM maps JMM to hardware memory model

• in shared-memory multiprocessor architectures:
– each processor (or processor core) has its own cache (or even

several layers of caches)
– cache is periodically reconciled with main memory
– cache strategies vary among architectures

=> hardware memory model

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (27)

barriers and fences

• JVM must use special instructions for memory
coordination (called memory barriers or fences)
– to shield developers from hardware differences
– to implement the JMM rules

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (28)

agenda

• history of concurrency & concurrency trends
• synchronization and memory model

– atomicity
– visibility
– ordering

• fight the serialization – improve scalability
• future trends

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (29)

need for atomicity

• non-atomic operations are a problem in case of race
conditions
– interleaved access to shared resources

where at least one access is a modification

array[0] = 2;

cnt ++; // cnt == 1

thread 1

array[0] = 1;

cnt++; // cnt = = 2

thread 2

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (30)

atomicity guarantees

• explicit synchronization
– execution of operations in a synchronized block is atomic
– same for operations between acquisition / release of explicit lock

• unsynchronized field access
– access to primitive type (except long/double) is atomic
– access to references is atomic (does not include access to object)
– access to volatile variables (including long/double) is atomic
– access to atomic variables is atomic

• common misconception
– atomicity means we get the most recent value - wrong!
– atomic access to a variable just means:

we will not get some jumble of bits

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (31)

agenda

• history of concurrency & concurrency trends
• synchronization and memory model

– atomicity
– visibility
– ordering

• fight the serialization – improve scalability
• future trends

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (32)

need for visibility

• access to cnt is atomic
– no synchronization in size() needed

• visibility problem
– writes performed in one thread need not be visible to other threads
– i.e. modification of cnt in push()/pop() need not be visible to
size()

• volatile is needed not for atomicity, but for visibility

private int[] array;
private int cnt = 0;
...
public synchronized void push(int elm) { array[cnt++] = elm; }
public synchronized int pop() { return(array[--cnt]); }
public int size() { return cnt; }
...

must be volatile

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (33)

visibility guarantees

• changes made in one thread are guaranteed to be visible
to other threads under the following conditions:

– explicit synchronization
– thread start and termination
– read / write of volatiles
– first read of finals

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (34)

visibility guarantee: read / write of volatiles

• reading a volatile forces a reload from main memory
• writing to a volatile forces a flush to main memory

• matches our expectation
– when a thread reads a volatile, then all writes are visible

that any other thread performed prior to a write to the same
volatile

• how about volatile references ... ?

• volatile is not transitive
– read/write of a volatile reference affects the reference, but not

the referenced object (or array)

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (35)

volatile (since Java 5) - example

int answer = 0;
volatile boolean ready = false;

answer = 42;
ready = true;

Thread 1

if (ready)
print(answer);

Thread 2

Thread 0

must not print 0

not volatile

modified before
write to volatile

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (36)

non-transitive volatile - example

volatile Name name = null;

name = new Name();
name.setFirst("Eva");
name.setLast("Schulz");

Thread 1

if (name != null)
print(name);

Thread 2

Thread 0

might see empty object

reference modified before
write to fields

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (37)

volatile references

• what do we do to also make the modified object visible?

– make all fields of referenced object volatile
problem for arrays: array elements cannot be declared volatile

– modify elements before assignment to volatile reference
all changes made prior to writing to the volatile are flushed

– use explicit synchronization
viable fallback, at the expense of synchronization overhead

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (38)

agenda

• history of concurrency & concurrency trends
• synchronization and memory model

– atomicity
– visibility
– ordering

• fight the serialization – improve scalability
• future trends

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (39)

need for ordering

• ordering is closely related to visibility

• JMM is specified in terms of actions
– e.g. reads and writes to variables, locks and unlocks of monitors,

starting and joining threads
• JMM defines "happens-before" rules

– partial ordering on actions
– if there is no happens-before ordering between two operations the JVM

is free to reorder them
• miconception: "happens-after"

– there is no "happens-after" rule
– e.g. an action after a synchronized block can happen before or in the

critical section

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (40)

reordering problem - example

• incorrect, due to possible reordering
– result is unpredictable; even x=0 and y=0 can happen

public class PossibleReordering {
private static int x = 0, y = 0;
private static int a = 0, b = 0;

public static void main(String[] args) {

Thread one = new Thread(new Runnable() {

public void run() { a = 1; x = b; }
});

Thread two = new Thread(new Runnable() {

public void run() { b = 1; y = a; }
});

one.start(); two.start(); one.join(); two.join();

System.out.println("x="+x+",y="+y);
}

}

No!

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (41)

reordering - example

x = y = 0;
a = b = 0;

a = 1;

Thread 1 Thread 2

Thread 0

Can even result in x=0 and y=0 !
(as a result of reordering)

x = b;

b = 1;

y = a;

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (42)

ordering

• ordering rules have two aspects:

– within-thread
 thread performing actions in a method

perceives instructions in normal as-if-serial order

– between-thread
 other threads ‘spying’ on this thread

by concurrently running unsynchronized methods
might perceive instructions in arbitrary order

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (43)

ordering guarantees

• ordering of synchronized blocks is preserved
• ordering of read/write of volatile fields is preserved
• ordering of initialization/access to final fields is

preserved

• matches our expectation
– actions in one synchronized block happen (i.e. effects become

visible) before another thread acquires the same lock
– effect of writing to a volatile is visible to all subsequent reads
– all threads will see the correct values of final fields that were set

by the constructor

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (44)

agenda

• history of concurrency & concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (45)

performance wise

• cannot buy a faster CPU to speed up the program
– or hope for a faster CPU six/twelve month from now

when you program feels slow during development
• software must be designed so

that
– it can take advantage of the

additional cores / CPUs
– can scale with additional cores /

CPUs

Moore's law

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (46)

Amdahl’s law

• named after computer architect Gene Amdahl
– "Validity of the Single Processor Approach to Achieving Large-

Scale Computing Capabilities", AFIPS Conference Proceedings,
(30), pp. 483-485, 1967.

– Gene Amdahl has approved the use of his complete text in the
Usenet comp.sys.super news group FAQ which goes out on the
20th of each month

• used in parallel computing to predict the theoretical
maximum speedup using multiple processors

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (47)

(cont.)

• idea: divide work into serial and parallel portions
– serial work cannot be sped up by adding resources
– parallelizable work can

• Amdahl’s Law: speedup ≤

– F is the fraction that must be serialized
– N is the number of CPUs

• with N -> ∞, speedup -> 1/F
– with 50% serialization,

your program can only speed up by a factor of 2 (with: ∞ CPUs)

• naïve idea: from 1 to 2 CPUs = factor of 2 ?

N

1

F +
(1 – F))(

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (48)

(cont.)

• fight serialization to improve performance

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (49)

example

• looks highly parallelizable
– (if producers are slow increase their thread pool)

• 0% serialized ?
– no!

need synchronization to maintain the queue’s integrity

producer consumer

LinkedBlockingQueue

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (50)

LinkedBlockingQueue.offer()

public boolean offer(E o) {
if (o == null) throw new NullPointerException();
final AtomicInteger count = this.count;
if (count.get() == capacity)

return false;
int c = -1;
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {

if (count.get() < capacity) {
insert(o);
c = count.getAndIncrement();
if (c + 1 < capacity)

notFull.signal();
}

} finally {
putLock.unlock();

}
if (c == 0)

signalNotEmpty();
return c >= 0;

}

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (51)

(cont.)

• Doug Lea did an excellent job with the implementation
– highly optimized

split lock: put / take
count guarded lock-free
stack-local variables to speed up the execution inside the critical region
…

• structural problem
– serialization of offering threads (producers)
– similar serialization of getting threads (consumers)

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (52)

serialization

• where/when threads demand concurrent access

• often hidden
– in frameworks / third party abstractions

• other area: asynchronous service architecture
– example: java.nio.channels.Selector

section on concurrency in the respective JavaDoc
– management to send back the result asynchronously

Jetty continuation

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (53)

fight the serialization …

… try to reduce lock induced serialization

• smallest critical region possible
– synchronized block vs. synchronized method

or use explicit locks
– speed up execution inside the critical region
– replace synchronized counters with AtomicInteger

• lock splitting / striping
– guard different state with different locks
– reduces likelihood of lock contention

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (54)

fight the serialization …

… try to eliminate locking entirely

• replace mutable objects with immutable ones
• replace shared objects with thread-local ones

– e.g. make a copy before passing it to a concurrent thread

• lock-free programming

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (55)

agenda

• history of concurrency & concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (56)

trends

• lock-free programming
– supported in Java since JDK 5.0

java.util.concurrent.atomic, and
Concurrent collections in java.util.concurrent

• transactional memory
– neither supported in Java nor in any popular programming

language at the moment

• commonality
– avoid locking to avoid serialization

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (57)

agenda

• history of concurrency & concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

– lock free programming
– transactional memory

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (58)

CAS

• modern processors have a primitive called compare-
and-swap, or CAS

• a CAS operation includes three operands
– a memory location
– the expected old value
– a new value

• the processor will atomically update the location to the
new value
– if the value that is there matches the expected old value
– otherwise it will do nothing
– it returns the value that was at that location prior to the CAS

instruction

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (59)

CAS permits atomic read-modify-write

• CAS allows an algorithm to execute a read-modify-
write sequence
– without fear of another thread modifying the variable in the

meantime
– if another thread did modify the variable, the CAS would detect

it (and fail)
– and the algorithm could retry the operation

• CAS-like operation are available in JDK 5.0 as "atomic
variables“
– based on the underlying system/hardware/CPU support
– java.util.concurrent.atomic

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (60)

example - thread-safe counter

• increment() / decrement() are read-modify-write
operations and must be atomic
– atomic read-modify-write cannot be achieved by making instance

variable volatile
– need to be synchronized

• get() without synchronization, since value is volatile

public class SafeCounter {
private volatile int value;

public int getValue() { return value; }
public synchronized int increment() { return ++value; }
public synchronized int decrement() { return --value; }

}

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (61)

example - thread-safe counter – lock free

public class AtomicCounter {
private AtomicInteger value;
public int getValue() { return value.get(); }
public int increment() {
int oldValue = value.get();
while (!value.compareAndSet(oldValue,

oldValue + 1))
oldValue = value.get();

return oldValue + 1;
}
public int decrement() {
int oldValue = value.get();
while (!value.compareAndSet(oldValue,

oldValue - 1))
oldValue = value.get();

return oldValue - 1;
}

}

is atomic

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (62)

lock-free

• advantages
– fast (~ 4 times faster than best locks)
– deadlock immunity
– …

• disadvantages
– hard to program !!!

no simple straight forward approach as with locks
– …

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (63)

hard to program, but what you can do

• some strategies
– e.g. lock-free counter, ABA problem, …
– no single best resource of information known

best to search the web for ‘lock free programming’

• algorithms for standard data structures
– map, linked list, …
– Concurrent collections from java.util.concurrent
– use these in your program

or these in combination with locks

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (64)

agenda

• history of concurrency & concurrency trends
• synchronization and memory model
• fight the serialization – improve scalability
• future trends

– lock free programming
– transactional memory

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (65)

transactional memory …

• … or software transactional memory (STM)

• similar to optimistic strategies in database transactions
– e.g. optimistic locking pattern for EJBs

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (66)

strategy

• thread does modifications to shared memory/object
– without regards what the other threads are doing

• finished modifications
– commit

 verification that no other thread made concurrent modifications
– abort and rollback

 concurrent modifications occurred
 error handling: (in most cases) retry of the transactions

• increased concurrency vs. overhead of retrying
transactions that failed

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (67)

conceptual pros

• very intuitive, e.g. update an object in shared memory
– close to the original Java approach

 object = monitor, (public) mutating methods are synchronized

• language integration proposal
– Tim Harris and Keir Fraser: Language Support for Lightweight

Transactions
– http://citeseer.ist.psu.edu/harris03language.html

public void addName(String name) {
atomic {

nameCount++;
nameList.add(name);

}
}

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (68)

conceptual cons

• abort and rollback
- implies that you can undo every operation

– what about those that are not memory based ?
e.g. unbufferd I/O

– solution possibilities
add a buffer that can at least hold the changes made in the transaction
explicit undo operation

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (69)

want to try STM ?

• no popular programming language supports STM
– at the moment

• use a more experimental language
– e.g. Clojure

 dynamic programming language, Lisp dialect
 compiles to JVM bytecode
 “… general-purpose language, combining the approachability and

interactive development of a scripting language with an efficient
and robust infrastructure for multithreaded programming …”

 http://clojure.sourceforge.net/

– there are others too (not compiling to the JVM)

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (70)

wrap-up

• a trend towards concurrent, asynchronous computing
– MT initally for better structure
– today to overcome synchronicity (messaging, AJAX, ...)

• multicore architecture might reveal yet undetected bugs
– due to memory model issues (atomicity, visibility, ordering)

• multicore architectures need scalable software to be useful
– avoid serialization - increase concurrency - Amdahl's law

• a gaze into the crystal ball
– lock-free programming is already in use (by experts)
– transactional memory might ease concurrent programming some time

in the future

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (71)

authors

Angelika Langer
Training & Consulting

Klaus Kreft
SEN Group, Munich, Germany

http://www.angelikalanger.com/Forms/Contact.html

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14 multi-core java (72)

Java Programming in a Multicore World

Q & A

