
1

Exception Handling Programming Techniques (1)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exception Handling in ANSI C++Exception Handling in ANSI C++

Programming With Exceptions

Angelika Langer
Trainer/Consultant

http://www.AngelikaLanger.com

Exception Handling Programming Techniques (2)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Programming With ExceptionsProgramming With Exceptions

ο Use of exceptions pervades an entire
application and cannot be localized.
—An exception can be propagated up the call stack.
—Each exception "terminates" the respective current

block.
ο Throwing an exception is easy; writing code

that uses a throwing function is hard.
—We will see why.

2

Exception Handling Programming Techniques (3)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Programming With ExceptionsProgramming With Exceptions

ο Exceptions can pop up everywhere.

ο Before exception handling it was impossible to
indicated errors in constructors, overloaded
operators, and destructors.
—Either they have no return code, or
—the return code is used for purposes other than error

reporting, e.g. operator chains

Exception Handling Programming Techniques (4)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions Everywhere ...Exceptions Everywhere ...

A typical C idiom:
while (a[i++] = b[j++])

ο a and b can be of different types, e.g. the STL
containers vector and deque.

ο i and j can be of different iterator types.
ο Assignment can be overloaded for the element type.
ο Converting constructors and cast operators can be

involved.

3

Exception Handling Programming Techniques (5)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions Everywhere ...Exceptions Everywhere ...
vector<string> a; deque<char*> b;

vector<string>::iterator i; deque<char*>::iterator j;

while (a[i++] = b[j++])

actually is a sequence of functions calls each of which
might throw an exception:

while ((a.operator[](i.operator++()))

.operator=(string

(b.operator[](j.operator++()))))

Exception Handling Programming Techniques (6)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions Everywhere ...Exceptions Everywhere ...

A typical C idiom:
while (a[i++] = b[j++])

If an exception appears ...
ο where did it come from?

The order of evaluation of function arguments is
unspecified. If an exception appears ...

ο what are the current values of a, b, i, and j?

4

Exception Handling Programming Techniques (7)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Programming With ExceptionsProgramming With Exceptions

ο Exceptions cannot be ignored.

ο We must cope with them when they occur, even
if we are not willing to handle them.
—An exception terminates the current block,
—current operations are aborted before they are

finished,
—objects might be left in inconsistent states, and
—acquired local resources might not be released.

Exception Handling Programming Techniques (8)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions cannot be ignored ...Exceptions cannot be ignored ...
class date {

public: date(int d, int m, int y)

:day(d), mon(m), year(y);

friend istream&

operator>>(istream& is, date& d)

{ return (is >> d.day >> d.mon >> d.year); }
};

An exception can leave the date object half-initialized.
—a typical problem when composite resources are

manipulated

5

Exception Handling Programming Techniques (9)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions cannot be ignored ...Exceptions cannot be ignored ...
template <class T>

void Stack<T>::push(const T& elem)

{ mutex_.acquire();

v_[top_] = elem;

top_++;

mutex_.release();
}

In case of an exception the mutex object would not be
released.
—a typical problem with dynamically acquired

resources

Exception Handling Programming Techniques (10)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

AgendaAgenda

οο Resource Acquisition is IntializationResource Acquisition is Intialization
ο The auto_ptr template
ο Exceptions in Constructors
ο Exceptions in Destructors
ο Preserve Exception Information
ο Preserve the Object State
ο An Exception-Safe stack Implementation
ο Exception Safety

6

Exception Handling Programming Techniques (11)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Resource AcquisitionResource Acquisition

void use_file (const char* filnam)

{ FILE* fil = fopen(filnam,"w");

// use the file fil
fclose(fil);

}

In case of an exception the file would not be closed.

Exception Handling Programming Techniques (12)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Resource AcquisitionResource Acquisition

void use_file (const char* filnam)

{ FILE* fil = fopen(filnam,"w");

try {/* use the file fil */}
catch (...)

{ fclose(fil);

throw;
}
fclose(fil);

}

7

Exception Handling Programming Techniques (13)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Resource AcquisitionResource Acquisition

ο All excpetions are caught and the file is closed,
i.e. the resource is released, in the catch block.
—Error-prone, because it can get rather complicated if

numerous resources are acquired and released.

ο A more elegant solution: Wrap resources into
classes, and use constructors for acquisition and
destructors for release.
—Destructors are called even when exceptions appear

and this way release is guaranteed.

Exception Handling Programming Techniques (14)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

A File Pointer ClassA File Pointer Class
class FilePtr {

private:

FILE* fp_;

public:

FilePtr (const char* filnam, const char* mod)

: fp_(fopen(filnam,mod)) { }

FilePtr (FILE* fp) : fp_(fp) { }

~FilePtr() { fclose(fp_); }

operator FILE*() { fp_; }

};

FilePtr
"file1.txt"

FILE*

8

Exception Handling Programming Techniques (15)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Resource AcquisitionResource Acquisition

void use_file (const char* filnam)

{ FilePtr fil (filnam,"w");

// use the file fil
} // automatically closed via destructor

Exception Handling Programming Techniques (16)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

AgendaAgenda

ο Resource Acquisition is Intialization
οο The The auto_ptrauto_ptr templatetemplate
ο Exceptions in Constructors
ο Exceptions in Destructors
ο Preserve Exception Information
ο Preserve the Object State
ο An Exception-Safe stack Implementation
ο Exception Safety

9

Exception Handling Programming Techniques (17)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Resource AcquisitionResource Acquisition

class Thing { /* ... */ };

void func ()

{ Thing* tp = new Thing;

// ...
delete tp;

}

In case of an exception the Thing would not be deleted.

Exception Handling Programming Techniques (18)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The auto_ptrauto_ptr ClassClass

ο Use auto_ptr for dynamically allocated, local
objects.

ο An auto_ptr stores a pointer to an object
obtained via new and deletes that object when
it itself is destroyed (such as when leaving block
scope).

10

Exception Handling Programming Techniques (19)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Using Using auto_ptrauto_ptr

class Thing { /* ... */ };

void func ()

{ auto_ptr<Thing> tp(new Thing);

// ...
}

auto_ptr takes care of deleting Thing when leaving
the function body (either on normal return or when an
exception appears).

Exception Handling Programming Techniques (20)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The auto_ptrauto_ptr ClassClass
template<class X> class auto_ptr {

private:

X* ptr_;

public: // construct/destroy:
explicit auto_ptr(X* p =0) throw()

: ptr_(p) {}

~auto_ptr() throw() { delete ptr_; }

};

11

Exception Handling Programming Techniques (21)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The auto_ptrauto_ptr ClassClass

The auto_ptr provides a semantics of strict
ownership.

ο An auto_ptr owns the object it holds a pointer to.
ο Copying an auto_ptr copies the pointer and transfers

ownership to the destination.
ο If more than one auto_ptr owns the same object at

the same time the behavior of the program is undefined.

Exception Handling Programming Techniques (22)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Transfer of OwnershipTransfer of Ownership

auto_ptr<Thing> tp(new Thing);

auto_ptr<Thing> tp2 = tp;

ο After assignment tp2 owns the object, and tp no
longer does.

ο tp is empty; deleting tp would not delete any Thing
object anymore.

12

Exception Handling Programming Techniques (23)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Transfer of OwnershipTransfer of Ownership

Thing* p = new Thing;

auto_ptr<Thing> tp1(p);

auto_ptr<Thing> tp2(p);

Misuse:
ο More than one auto_ptr owns the Thing object.

Exception Handling Programming Techniques (24)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The auto_ptrauto_ptr ClassClass
template<class X> class auto_ptr {

public: // give up ownership:
X* release() throw()

{ X* tmp = ptr_; ptr_ = 0; return tmp; }

public: // copy constructor:
auto_ptr(auto_ptr& a) throw()

{ ptr_(a.release()); }

};

13

Exception Handling Programming Techniques (25)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The auto_ptrauto_ptr ClassClass

More operations that give up ownership:

template<class X> class auto_ptr {

public: // generic copy constructor:
template<class Y>

auto_ptr(auto_ptr<Y>&) throw();

public: // generic conversion:
template<class Y>

operator auto_ptr<Y>() throw();

};

Exception Handling Programming Techniques (26)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The auto_ptrauto_ptr ClassClass
template<class X> class auto_ptr {

public: // change ownership:
void reset(X* p=0) throw()

{ delete ptr_; ptr_ = p; }

public: // assignment:
auto_ptr& operator=(auto_ptr& a) throw()

{ if (&a!=this) reset(a.release()); }

template<class Y> auto_ptr&

operator=(auto_ptr<Y>&) throw();

};

14

Exception Handling Programming Techniques (27)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The auto_ptrauto_ptr ClassClass

template<class X> class auto_ptr {

public: // members:
X* get() const throw() { return ptr_; }

X& operator*() const throw()

{ return *get(); }

X* operator->() const throw()

{ return get(); }

};

Exception Handling Programming Techniques (28)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The auto_ptrauto_ptr ClassClass

The uses of auto_ptr include
ο providing temporary exception-safety for dynamically allocated

memory,
ο passing ownership of dynamically allocated memory to a function,

and

ο returning dynamically allocated memory from a function.

auto_ptr cannot be used as the element type of
the STL containers.

ο auto_ptr does not meet the CopyConstructible and Assignable
requirements for STL container elements.

15

Exception Handling Programming Techniques (29)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Using Using auto_ptrauto_ptr

Conventional pointer member:

class X {

T* pt_;

public:

X() : pt_(new T) {}

~X(){ delete pt_; }

};

Alternative using auto_ptr:

class X {

auto_ptr<T> apt_;

public:

X() : apt_(new T) {}

~X() {}

};

Exception Handling Programming Techniques (30)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Using Using auto_ptrauto_ptr

Container of pointers:
vector<T*> v1, v2;

v1 = v2; // copies all pointers from v2 to v1

// i.e. v1 and v2 share ownership of the pointed to
// elements

Don't use auto_ptr with STL containers !!!
vector<auto_ptr<T> > v1, v2;

v1 = v2; // copies all elements from v2 to v1,
// i.e. v2 transfers ownership of all its elements to v1;
// all auto_ptrs in v2 are emtpy after this assignment

16

Exception Handling Programming Techniques (31)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

AgendaAgenda

ο Resource Acquisition is Intialization
ο The auto_ptr template
οο Exceptions in ConstructorsExceptions in Constructors
ο Exceptions in Destructors
ο Preserve Exception Information
ο Preserve the Object State
ο An Exception-Safe stack Implementation
ο Exception Safety

Exception Handling Programming Techniques (32)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions in Exceptions in newnew ExpressionsExpressions

What happens if X's constructor throws?

X* p1 = new X;

X* p2 = new X[256];

The memory allocated by the operator
new() is freed. No memory leak!

17

Exception Handling Programming Techniques (33)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions in ConstructorsExceptions in Constructors

Constructors are a special case. If an exception
propagates from an constructor ...

ο the partial object that has been constructed so
far is destroyed.
—If the object was allocated with new the memory is

deallocated.
ο only the destructors of fully constructed

subobjects are called.
—The destructor of the object itself is not called.

Exception Handling Programming Techniques (34)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions in ConstructorsExceptions in Constructors

class X {

S s_; T t_;

public:

X(const S& s, const T& t)

: s_(s), t_(t) // assume exception from copy ctor of T
{}

~X(){}

};

Destructor for t_ is not called, because it was not constructed.
Destructor for s_ is called (fully constructed subobject).
Destructor ~X() is not called.

18

Exception Handling Programming Techniques (35)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions in ConstructorsExceptions in Constructors

If a resource is obtained directly (not as part of a
subobject) a resource leak can occur.

Only the allocation and construction of subobjects
is reverted in case of an exception.
—No automatic cleanup for already performed

initializations.

Exception Handling Programming Techniques (36)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions in ConstructorsExceptions in Constructors
class X {

S* ps_; T* pt_;

public:

X() : ps_(new S), pt_(new T) {}

~X(){ delete pt_; delete ps_; }

};

Assume an exception is thrown from the constructor of T.
Allocation of the temporary T object fails. Memory allocated with
new T is deallocated; ~T() is not called.

The pointers ps_ and pt_ are destroyed.
The construction of X fails; the destructor ~X() is not called.
The object ps_ points to is never deleted.

19

Exception Handling Programming Techniques (37)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions from a Constructor Initializer ListExceptions from a Constructor Initializer List

How can we catch exceptions from a constructor initializer
list?

X::X() try : ps_(new S), pt_(new T)

{}

catch(...)

{ // problem: don't know what happened
// exception can stem from ctor initializer or function body

}

Exception Handling Programming Techniques (38)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions in ConstructorsExceptions in Constructors
A solution:
ο Not ideal; error-prone in case of numerous

dynamically acquired resources.

X::X(){

try {ps_ = new S;}

catch(...)

{ throw; /* do nothing, because no subobject is constructed yet */ }

try {pt_ = new T;}

catch(...)

{ delete ps_; }
}

20

Exception Handling Programming Techniques (39)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions in ConstructorsExceptions in Constructors
Another solution:
ο Initialize pointers to 0, so that you can safely delete

them.

X::X() : ps_(0), pt_(0)

{ try { ps_ = new S; pt_ = new T; }

catch (...)

{ delete pt_;

delete ps_; // reverse order
throw;

}
}

Exception Handling Programming Techniques (40)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exceptions in ConstructorsExceptions in Constructors
Yet another solution: Use auto_ptr.

class X {

auto_ptr<S> aps_; auto_ptr<T> apt_;

public:

X() : aps_(new S), apt_(new T) { }

~X() {}

};

Assume an exception is thrown from the constructor of T.
The subobject apt_ is not created and need not be destroyed.
The subobject aps_ is destroyed; the destructor of aps_ destroys

the object aps_ points to.

21

Exception Handling Programming Techniques (41)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

RulesRules

ο Avoid resource leaks.
ο Use "resource acquisition is initialization" for

dynamically acquired resources.
—Wrap resources into a class, acquire in its

constructor, and release in its destructor.
ο Use auto_ptr for dynamically allocated

memory.

Exception Handling Programming Techniques (42)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

AgendaAgenda

ο Resource Acquisition is Intialization
ο The auto_ptr template
ο Exceptions in Constructors
οο Exceptions in DestructorsExceptions in Destructors
ο Preserve Exception Information
ο Preserve the Object State

22

Exception Handling Programming Techniques (43)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Destructors and ExceptionsDestructors and Exceptions

A destructor can be called
ο as the result of normal exit from a scope, a
delete expression, or an explicit destructor
call, or

ο during stack unwinding, when the exception
handling mechanism exits a scope containing an
object with a destructor.
—If an exception escapes from a destructor during stack

unwinding ::std::terminate() is called.

Exception Handling Programming Techniques (44)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Destructors and ExceptionsDestructors and Exceptions

ο Do not let exceptions propagate out of a destructor!

X::~X()

try { /* destructor body */ }

catch (...)

{ if (uncaught_exception())

// This is an exception during stack unwinding.
// Handle it! Do not re-throw!

else

// This is harmless. May propagate the exception.
}

23

Exception Handling Programming Techniques (45)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

AgendaAgenda

ο Resource Acquisition is Intialization
ο The auto_ptr template
ο Exceptions in Constructors
ο Exceptions in Destructors
οο Preserve Exception InformationPreserve Exception Information
ο Preserve the Object State
ο An Exception-Safe stack Implementation
ο Exception Safety

Exception Handling Programming Techniques (46)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

RulesRules

ο Do not catch any exceptions if you do not know
how to handle them.
—Rewrite functions to preserve state instead of

adding catch clauses.
—If you cannot ignore propagated exceptions, use a

catch-all clause.
—If you get stuck, call terminate() instead of
abort().

24

Exception Handling Programming Techniques (47)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Statement RearrangementStatement Rearrangement
Typical C++ code corrupts object state if assignment fails:
array[i++] = element; // >>// >>

Exception handling is expensive. Don't do this:
try { array[i++] = element; } // >>// >>
catch(...) { i--; throw; }

Rewrite to:
array[i] = element; // >>// >>
i++;

Exception Handling Programming Techniques (48)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

RulesRules

ο Do not hide exception information from other
parts of the program that might need them.
—Always rethrow the exception caught in a catch-all

clause.
—Re-throw a different exception only to provide

additional information.

25

Exception Handling Programming Techniques (49)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Hiding ExceptionsHiding Exceptions
template <class T> class Stack<T> {

public:

struct AllocationError : public bad_alloc

{ size_t stack_size; } // has additional information
Stack& operator=(const Stack& rhs)

{ // ...
try { new_buffer = new T[new_elems]; }

catch(...)

{ throw AllocationError(new_elems); }

// ...
}

}; What's wrong here?What's wrong here?

Exception Handling Programming Techniques (50)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Hiding ExceptionsHiding Exceptions
try { new_buffer = new T[new_elems]; }

catch(...)

{ throw AllocationError(new_elems); }

What if T::T() throws an exception?

A caller's handler that is prepared to handle the
constructor exception does not get a chance to do so,
and a handler for the allocation error might try to solve
the wrong problem.

26

Exception Handling Programming Techniques (51)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Hiding ExceptionsHiding Exceptions
A possible solution:

new_buffer = new(nothrow()) T[new_elems];

if (new_buffer == 0)

throw AllocationError(new_elems);

Exception Handling Programming Techniques (52)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

AgendaAgenda

ο Resource Acquisition is Intialization
ο The auto_ptr template
ο Exceptions in Constructors
ο Exceptions in Destructors
ο Preserve Exception Information
ο Preserve the Object State
οο An exceptionAn exception--safe stack implementationsafe stack implementation

27

Exception Handling Programming Techniques (53)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

A A StackStack ClassClass
template<class T> class Stack {

size_t nelems_;

size_t top_;

T* v_;

public:

size_t count() const { return top_; }

void push(T);

T pop();

Stack();

~Stack();

Stack(const Stack&);

Stack& operator=(const Stack&);
};

Exception Handling Programming Techniques (54)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

ExceptionException--Safe Safe Stack::pop()Stack::pop()

ο Identify all statements where an exception can
appear.

ο Identify all problems that can occur in presence
of an exeption. On exit from the function:
—Is the Stack object still unchanged?
—Is it still in a valid, consistent state?
—Is it still destructible?
—Are there any resource leaks?

ο Rewrite the function to meet the goals above!

28

Exception Handling Programming Techniques (55)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The Stack::pop()Stack::pop()

template <class T>

T Stack<T>::pop()

{

if(top_==0)

throw "pop on empty stack";

return v_[--top_];

}

Exception Handling Programming Techniques (56)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Possible Exception SitesPossible Exception Sites
template <class T>

T Stack<T>::pop()

{

if(top_==0)

throw "pop on empty stack";

// stack has not yet been modified
// ok; nothing evil can happen here

return v_[--top_];

}

29

Exception Handling Programming Techniques (57)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Possible Exception SitesPossible Exception Sites
template <class T> T Stack<T>::pop()

{ if(top_==0) throw "pop on empty stack";

return v_[--top_]; // >>// >>
// size_t decrement and array subscript- ok
// return statement creates copy of element of type T
// copy constructor of T - can fail

// definitely a problem here!
}

Decrement happens before copy construction of return value.
The stack object is modified although the pop() operation fails.

Exception Handling Programming Techniques (58)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Leave object unLeave object un--modifiedmodified
return v_[--top_]; // >>// >>
// definitely a problem here!
// The stack object is modified although the pop() operation fails.

try { return v_[--top_]; }

catch(...)

{ // restore original state
top_++;

throw;

}

30

Exception Handling Programming Techniques (59)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

RuleRule

Leave your object in the state it had when the
function was entered.
—Catch exceptions and restore the initial state.

Exception Handling Programming Techniques (60)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

ExceptionException--Safe Safe StackStack AssignmentAssignment

ο Identify all statements where an exception can
appear.

ο Identify all problems that can occur in presence
of an exeption. On exit from the function:
—Is the Stack object still unchanged?
—Is it still in a valid, consistent state?
—Is it still destructible?
—Are there any resource leaks?

ο Rewrite the function to meet the goals above!

31

Exception Handling Programming Techniques (61)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

The The StackStack AssignmentAssignment
template <class T>

Stack<T>& operator=(const Stack<T>& s)

{

if(&s == this) return *this;

delete[] v_;

v_ = new T[nelems_ = s.nelems_];

for (top_=0;top_<s.top_;top_++)

v_[top_] = s.v_[top_];

return *this;

}

Exception Handling Programming Techniques (62)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Possible Exception SitesPossible Exception Sites
template <class T>

Stack<T>& operator=(const Stack<T>& s)

{

if(&s == this) return *this;

// pointer comparison - ok
// pointer copying for return - ok
// ok; nothing evil can happen here

// continued on next slide
}

32

Exception Handling Programming Techniques (63)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Possible Exception SitesPossible Exception Sites
template <class T>

Stack<T>& operator=(const Stack<T>& s)

{

delete[] v_;

// destruction of elements of type T, i.e. T::~T() is called
// ok; if we assume that destructors do not throw
// deallocation of heap memory - ok

// continued on next slide
}

Exception Handling Programming Techniques (64)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Possible Exception SitesPossible Exception Sites
template <class T>

Stack<T>& operator=(const Stack<T>& s)

{

v_ = new T[nelems_ = s.nelems_]; // >>// >>
// assignment of size_t objects - ok
// allocation of heap memory - can fail!
// construction of elements of type T - can fail!
// pointer assignment - ok
// definitely a problem here!

// continued on next slide
}

33

Exception Handling Programming Techniques (65)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Possible Exception SitesPossible Exception Sites
template <class T>

Stack<T>& operator=(const Stack<T>& s)

{ for (top_=0;top_<s.top_;top_++)

// assignment, comparison, increment of size_t objects - ok

v_[top_] = s.v_[top_]; // >>// >>
// array subscript - ok
// assignment operator for type T - can fail!
// definitely a problem here!

return *this;
}

Exception Handling Programming Techniques (66)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Possible Exception SitesPossible Exception Sites
delete[] v_;

v_ = new T[nelems_ = s.nelems_]; // >>// >>
// definitely a problem here!

Old array is deleted.
Allocation of new array failed.
Pointer v_ is left dangling.
The Stack destructor will try to delete v_ => disaster!

The Stack object is not even destructible any more!

34

Exception Handling Programming Techniques (67)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Possible Exception SitesPossible Exception Sites
delete[] v_;

v_ = new T[nelems_ = s.nelems_]; // >>// >>
for (top_=0;top_<s.top_;top_++)

v_[top_] = s.v_[top_]; // >>// >>
// definitely a problem here!

Stack object is invalid because copy has been done only partially.
Since the old Stack data is already deleted, we cannot leave the Stack

in its original state.
A solution: Define a NIL object, which represents a valid, but not

usable value. (NULL pointer, zero-size string, emtpy stack)

Exception Handling Programming Techniques (68)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Keep Keep StackStack destructibledestructible
delete[] v_;

v_ = new T[nelems_ = s.nelems_]; // >>// >>
// Pointer v_ is left dangling. The Stack destructor will try to delete
v_ => disaster!

T* tp = v_;

v_ = 0;

delete tp;

v_ = new T[nelems_ = s.nelems_]; // >>// >>
// The Stack destructor can safely delete v_ .

35

Exception Handling Programming Techniques (69)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Leave Leave StackStack in a valid NIL statein a valid NIL state
v_ = new T[nelems_ = s.nelems_]; // >>// >>
for (top_=0;top_<s.top_;top_++)

v_[top_] = s.v_[top_]; // >>// >>
// Stack object is invalid because copy has been done only partially.

v_ = new T[s.nelems_]; // >>// >>
top_=0; nelems_=0;

for (size_t i=0;i<s.top_;i++)

v_[i] = s.v_[i]; // >>// >>
nelems_ = s.nelems_; top_ = s.top_;

// Stack object is NIL, i.e. empty, if copy fails.

Exception Handling Programming Techniques (70)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Leave Leave StackStack untoucheduntouched
v_ = new T[nelems_ = s.nelems_]; // >>// >>
for (top_=0;top_<s.top_;top_++)

v_[top_] = s.v_[top_]; // >>// >>
// Stack object is invalid because copy has been done only partially.

new_buffer = new T[s.nelems_]; // >>// >>
for (size_t i=0;i<s.top_;i++)

new_buffer[i] = s.v_[i]; // >>// >>
swap(v_,new_buffer); delete [] new_buffer;

nelems_ = s.nelems_; top_ = s.top_;

// Stack object is not modified until copy is successfully completed.

36

Exception Handling Programming Techniques (71)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

RuleRule

Perform critical operations through temporaries.
— Modify the object only after successful completion.

Leave valid NIL objects if you can't preserve the original
state.
— Set object state to NIL before a critical operation and set to

final value afterwards, i.e. only in case of success.

Keep your objects destructible.
— Do not leave dangling pointer in your objects.
— Delete pointers through temporaries.

Exception Handling Programming Techniques (72)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Eliminate Resource LeakEliminate Resource Leak
new_buffer = new T[s.nelems_]; // >>// >>
for (size_t i=0;i<s.top_;i++)

new_buffer[i] = s.v_[i]; // >>// >>
swap(v_,new_buffer);

delete [] new_buffer;

The memory allocated for new_buffer is not deallocated.
=> resource leak!

37

Exception Handling Programming Techniques (73)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

An An auto_array_ptrauto_array_ptr ClassClass

ο Implement an auto pointer that holds a pointer
to an array of elements.

ο Solve the resource leak problem in the Stack
assignment using the auto array pointer.

Exception Handling Programming Techniques (74)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

An An auto_array_ptrauto_array_ptr ClassClass

template <class X> class auto_array_ptr {

X* p_;

public:

explicit auto_array_ptr(X* p=0) throw()

: p_(p) {}

auto_array_ptr(auto_array_ptr<X>& ap) throw()

: p_(ap.release()) {}

~auto_array_ptr() { delete[] p_;delete[] p_; }

void operator=(auto_array_ptr<X>& rhs)

{ if(&rhs!=this) reset(rhs.release()); }
// ...

};

38

Exception Handling Programming Techniques (75)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

An An auto_array_ptrauto_array_ptr ClassClass

template <class X> class auto_array_ptr {

public:

// ...
X& operator*() const throw() { return *p_; }

X* operator->() const throw() { return p_; }

X& operator[]operator[](size_t i) const throw()
{ return p_[i]; }

X* get() const throw() { return p_; }

// ...
};

Exception Handling Programming Techniques (76)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

An An auto_array_ptrauto_array_ptr ClassClass
template <class X> class auto_array_ptr {

public:

X* release() throw()

{ X* tp=p_; p_=0; return tp; }

void reset(X* p=0)

{ X* tp=p_;

p_=p;

if (tp!=p) delete[]delete[] tp;
}
X* swap(X* p)swap(X* p) throw()

{ X* tp=p_; p_=p; return tp; }
};

39

Exception Handling Programming Techniques (77)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Eliminate Resource LeakEliminate Resource Leak
new_buffer = new T[s.nelems_]; // >>// >>
for (size_t i=0;i<s.top_;i++)

new_buffer[i] = s.v_[i]; // >>// >>
swap(v_,new_buffer); delete [] new_buffer;

// The memory allocated for new_buffer is not deallocated.
=> resource leak!

auto_array_ptr<T> new_buffer(new T[s.nelems_]);

for (size_t i=0;i<s.top_;i++)

new_buffer[i] = s.v_[i];

v_ = new_buffer.swap(v_);

Exception Handling Programming Techniques (78)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

RulesRules

ο Leave your object in the state it had when the function
was entered.

ο Perform critical operations through temporaries.
ο Leave valid NIL objects if you can't preserve the

original state.
ο Keep your objects destructible.
ο Use auto pointers and "resource acqusition is

initialization" to avoid resource leaks.
ο Avoid side effects in critical operations.

40

Exception Handling Programming Techniques (79)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

AgendaAgenda

ο Resource Acquisition is Intialization
ο The auto_ptr template
ο Exceptions in Constructors
ο Exceptions in Destructors
ο Preserve Exception Information
ο Preserve the Object State
ο An Exception-Safe stack Implementation
οο Exception SafetyException Safety

Exception Handling Programming Techniques (80)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exception SafetyException Safety

A user of a function is interested in the guarantees
the function can give when exceptions are
propagated.

Document not only the pre- and post conditions
and the "normal" effect of a function, but also
its exception safety guarantees.

41

Exception Handling Programming Techniques (81)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exception Safety GuaranteesException Safety Guarantees

Level 0: No guarantee.
Part of the data the function tried to modify might be lost or
corrupted. Access to the data might cause a program crash.

Level 1: Destructibility.
Part of the data might be lost or in an incosistent state. It is not
possible to safely to access to the data. However, it is
guaranteed that the data can be destroyed.

Level 2: No resource leaks.
All objects that the function modifies have their destructors
called, either when f() handles the exception or when those
objects' destructors are called.

Exception Handling Programming Techniques (82)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Exception Safety GuaranteesException Safety Guarantees

Level 3: Consistency.
All objects are left in a consistent state, not necessarily the state
before f() was entered, and not necessarily the state after normal
termination. All operations on the data have well-defined
behavior. No crashes, no resource leaks, safe access.

Level 4: Full commit-or-rollback.
All objects are left in the state they had before execution of f().
All data values are restored to their previous values.

42

Exception Handling Programming Techniques (83)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

ReferencesReferences

The C++ Programming Language, 3rd EditionThe C++ Programming Language, 3rd Edition
Bjarne Stroustrup
Addison Wesley Longman, 1997

More Effective C++More Effective C++
Scott Meyers
Addison Wesley Longman, 1996

Exception Handling Programming Techniques (84)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

ReferencesReferences

C++ ReportC++ Report

Ten Rules for Handling Exception
Handling Sucessfully

Harald M. Müller, January 1996

Coping with Exceptions
Jack W. Reeves, March 1996

Exceptions and Standards
Jack W. Reeves, May 1996

Ten Guidelines for Exception
Specification

Jack W. Reeves, July 1996

Exceptions and Debugging
Jack W. Reeves,
November/December 1996

Making the World Safe for
Exception

Matthew H. Austern, January 1998

43

Exception Handling Programming Techniques (85)
last update: 06.11.2005 ,11:35

© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Contact InfoContact Info

Angelika LangerAngelika Langer

Training & Consulting
Object-Oriented Software Development in C++ & Java

Munich, Germany

Email: info@AngelikaLanger.com
http://www.AngelikaLanger.com

