
1

Angelika Langer
Trainer/Consultant

http://www.AngelikaLanger.com

Intensive C++

Implementing
Binary

Operators

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (2)

Objective

• Learn about the challenges of implementing binary
operators.
– It's simple for a single class and quite a challenge for a hierarchy

value types.

2

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (3)

Which type of classes ?

We will consider a class hierarchy of classes with the
following properties:

• value semantics
– a common case in C++
– object "owns" its data members

• composition by inheritance
– as opposed to "by delegation"
– base class is a concrete (non-abstract) class
– derived classes add data members

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (4)

Which type of functions ?

We will consider functions with the following properties:

• redefined in the class hierarchy
– implemented in the base class
– redefined by every derived class

• self-referential binary functions
– work on two objects of the same type
– examples: copying, comparing, ...

3

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (5)

Agenda

• Assignment Operator
• Comparison Operator

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (6)

A Class Hierachy

class Point2D
{
public: ...
Point2D& operator=(const Point2D& rhs);
};
class Point3D : public Point2D
{
public: ..
Point3D& operator=(const Point3D& rhs);
};
class ColoredPoint : public Point2D
{
public: ...
ColoredPoint& operator=(const ColoredPoint& rhs);
};

1

2

3

4

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (7)

void someFunction(Point2D& lhs, Point2D& rhs)
{ ...
lhs = rhs;
...

}

Problem

ColoredPoint red;
Point3D origin;
someFunction(red, origin);

assigns 2D part
of colored and 3D point

• Invocation through references leads to mixed-type
assignment and object slicing.

invokes
Point2D::operator=()

ColoredPoint red, blue;
someFunction(red,blue);

assigns 2D part
of colored points

?

?

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (8)

Point2D::operator=()

ColoredPoint

2D
part

color
part

Point3D

2D
part

3rd
dimension

part

Object Slicing

5

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (9)

void someFunction(Point2D& center, ColoredPoint& loc)
{ ...

center = loc;

loc = center;

...
}

Other cases ...

• Invocation through references to base and derived type:

invokes
Point2D::operator=()

does not compile

?

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (10)

void someFunction(Point3D& rhs, Point3D& lhs)
{ ...

rhs = lhs;

...
}

Other cases ...

• Invocation through references to derived type:

invokes
Point3D::operator=()

6

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (11)

Non-Virtual Assignment

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D

&

Point3D

1

2

OK slice

slice

slice

slice

slice

slice

slice

slice

slice

slice

-

slice

- - OK

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (12)

What's the problem ... ?

class Point2D
{
public: ...
Point2D& operator=(const Point2D& rhs);

};
class Point3D : public Point2D
{
public: ..
Point3D& operator=(const Point3D& rhs);

};
class ColoredPoint : public Point2D
{
public: ...
ColoredPoint& operator=(const ColoredPoint& rhs);

};

• no pass-by-value, yet object slicing - what's wrong ... ?

non-virtual
functions

7

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (13)

Another Class Hierachy

class Point2D
{
public: ...
virtual Point2D& operator=(const Point2D& rhs);

};
class Point3D : public Point2D
{
public: ..
virtual Point3D& operator=(const Point2D& rhs);

};
class ColoredPoint : public Point2D
{
public: ...
virtual ColoredPoint& operator=(const Point2D& rhs);

};

A

B

C

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (14)

void someFunction(Point2D& lhs, Point2D& rhs)
{ ...
lhs = rhs;
...

}

Problem

Point3D origin;
ColoredPoint red;
someFunction(origin,red);

invokes Point3D::operator=()
assigns Point3D part of ColoredPoint ???

• Invocation through references leads to mixed-type
assignment and potential crashes.

invokes virtual function

Point3D red, blue;
someFunction(red,blue); invokes Point3D::operator=()

8

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (15)

void someFunction(Point2D& lhs, Point2D& rhs)
{ ...
lhs = rhs;
...

}

Problem

Point2D origin2D;
Point3D origin3D;

someFunction(origin2D,origin3D);

someFunction(origin3D, origin2D);

invokes Point2D::operator=()
assigns Point2D part of Point3D

• We still get slices ...

invokes virtual function

invokes Point3D::operator=()
might crash

?

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (16)

Virtual Assignment

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

A

B

OK slice

OK

crash

crash

crash

slice

crash

OK

OK

slice

crash

OK

C

B OKcrash crash

9

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (17)

Crash

• Why would certain invocations lead to a crash?

• Behavior depends on the implementation:
– assignment takes base class references
– must do a type check somehow

class Point3D : public Point2D
{
public: ...
virtual Point3D& operator=(const Point2D& rhs)
{

... is Point2D a Point3D ? ...
}

};

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (18)

Crash

• Worst case implementation:
– blind downcast => program crash

• Friendly implementation
– uses RTTI (dynamic cast or typeid)
– if type check indicates

8same type
– perform assignment

8alien type
– thrown an exception ?
– perform slice comparison ?

10

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (19)

Dynamic Cast

class Point3D : public Point2D
{
public: ...
virtual Point3D& operator=(const Point2D& rhs)
{ ...

Point3D& tmp = dynamic_cast<Point3D&>(rhs);

// throws bad_cast exception in case of failure
...

}
};

... same for Point2D and ColoredPoint ...

• What does a type check via dynamic cast (as opposed
to a check via typeid) mean? Is it correct?

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (20)

Virtual Assignment

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

A

B

OK slice

OK

exc

exc

exc

slice

exc

OK

OK

slice

exc

OK

C

B OKexc exc

11

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (21)

Typeid

class Point2D
{
public: ...
virtual Point2D& operator=(const Point2D& rhs)
{ ...

if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();

... assign Point2D part ...
}

};

• Check for type match and allow assignment only for
objects of the same type.

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (22)

Type Check

class Point3D : public Point2D
{
public: ...
virtual Point3D& operator=(const Point2D& rhs)
{ ...

if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();

... assign Point3D part ...
}

};

... same for ColoredPoint ...

12

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (23)

void someFunction(Point2D& lhs, Point2D& rhs)
{ ...
lhs = rhs;
...

}

Invocation

Point3D origin;
ColoredPoint red;
someFunction(origin,red);

invokes Point3D::operator=()
throws exception

• Type check leads to runtime failure in form of an
exception.

invokes virtual function

Point3D red, blue;
someFunction(red,blue); invokes Point3D::operator=()

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (24)

Virtual Assignment

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

A

B

OK exc

OK

exc

exc

exc

exc

exc

OK

OK

exc

exc

OK

C

B OKexc exc

13

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (25)

Evaluation

• What have we achieved ?

• Symmetric behavior
– A can be assigned to B if and only if B can be assigned to A

• All combinations compile
– same-type comparison works
– mixed-type comparison fails (at runtime with an exception)

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (26)

What if ...

• ... we wanted to permit mixed-type assignment?

• Mixed-type assignment need not be rejected per se.
– all Point2Ds have something in common
– assignment of incompatible Point2Ds could be interpreted as

assignment of common part

• Goal:
– no slicing for same-type assignment
– symmetric slice comparison for mixed-type assignment

14

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (27)

Goal

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

A

B

OK slice

OK

slice

slice

slice

slice

slice

OK

OK

slice

slice

OK

C

B OKslice slice

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (28)

How can it be implemented ... ?

Two choices:

• table solution
– key: typeid of right- and left-hand side
– value: function pointer to assignment functionality

• double dispatch
– uses virtual function table dispatch

15

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (29)

Dispatch Table

class Point2D
{
private:
class DispatchTable
{public:

typedef Point2D&(*fptrType)(Point2D&, const Point2D&);
DispatchTable();
fptrType getFunction(const type_info& lhs,

const type_info& rhs);
private:
map<typeidPair,fptrType> tab;

};
static DispatchTable dispatchTable;

};

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (30)

Dispatch Table

DispatchTable()
{

const type_info& typPoint2D = typeid(Point2D);
const type_info& typPoint3D = typeid(Point3D);
const type_info& typColoredPoint = typeid(ColoredPoint);
tab[typeidPair(typPoint2D ,typPoint2D)] = &Point2D::assign;
tab[typeidPair(typPoint2D ,typPoint3D)] = &Point2D::assign;
tab[typeidPair(typPoint3D ,typPoint2D)] = &Point2D::assign;
tab[typeidPair(typPoint3D ,typPoint3D)] = &Point3D::assign;
tab[typeidPair(typPoint2D ,typColoredPoint)] = &Point2D::assign;
tab[typeidPair(typColoredPoint,typPoint2D)] = &Point2D::assign;
tab[typeidPair(typColoredPoint,typColoredPoint)] = &ColoredPoint::assign;
tab[typeidPair(typPoint3D ,typColoredPoint)] = &Point2D::assign;
tab[typeidPair(typColoredPoint,typPoint3D)] = &Point2D::assign;

}
fptrType getFunction(const type_info& lhs,const type_info& rhs)
{

return tab[typeidPair(lhs, rhs)];
}

16

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (31)

Point2D

class Point2D
{public:
Point2D& operator=(const Point2D& rhs)
{ DispatchTable::fptrType fptr

= dispatchTable.getFunction(typeid(*this), typeid(rhs));
return fptr(*this,rhs);

}
private:
static Point2D& assign(Point2D& lhs, const Point2D& rhs)

{ ... perform Point2D assignment ...
return *lhs;

}
};

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (32)

Point3D

class Point3D : public Point2D
{public:

// operator=(const Point2D& rhs) inherited from class Point2D

private:
static Point2D& assign(Point2D& lhs, const Point2D& rhs)

{ ... perform Point3D assignment ...
return lhs;

}
};

17

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (33)

Type Info Pair

class typeidPair
{public:

const type_info& first;
const type_info& second;
typeidPair(const type_info& a1, const type_info& a2)
: first(a1), second(a2) {}

};
inline bool operator<(const typeidPair& x, const typeidPair& y)
{ return x.first.before(y.first) ||

(!(y.first.before(x.first)) && x.second.before(y.second));
}

• type_info objects cannot be copied
– must be passed by reference

• pair does not permit reference members
– must wrap type_info objects into a wrapper type

• type_info does not have an operator< defined
– must use type_info.before()

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (34)

Double Dispatch

• Double Dispatch uses the vtable as the dispatch table.
– vtable dispatch uses left-hand side's type

• Idea: dispatch twice
– dispatch according to left-hand side's type
– switch roles of left- and right-hand side
– dispatch again (according to right-hand side's type)

18

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (35)

Double Dispatch

class Point2D
{public:
Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
private:
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point2D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs) const
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point2D& assignHelper(const Point3D& rhs) const
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point2D& assignHelper(const ColoredPoint& rhs) const
{ return ((Point2D&)rhs).assignPoint2D(*this); }
Point2D& assignPoint2D(const Point2D& rhs)

{ ... perform Point2D assignment ...
return *this;

}
};

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (36)

Double Dispatch

class Point3D : public Point2D
{public:

// Point2D& operator=(const Point2D&) inherited from base class
private:
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point3D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs) const
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point3D & assignHelper(const Point3D & rhs) const
{ return ((Point3D &)rhs).assignPoint3D (*this); }
virtual Point2D& assignHelper(const ColoredPoint& rhs) const
{ return ((Point2D&)rhs).assignPoint2D(*this); }
Point3D& assignPoint3D(const Point3D& rhs)
{ Point2D::assignPoint2D(rhs);

... perform Point3D assignment ...
return *this;

}
};

19

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (37)

Double Dispatch

class Point2D
{ Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point2D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point2D& assignHelper(const Point3D& rhs);
virtual Point2D& assignHelper(const ColoredPoint& rhs);
Point2D& assignPoint2D(const Point2D& rhs);

};

1

2

3

Point2D& a1 = Point2D();
Point2D& a2 = Point2D();
a1 = a2;

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (38)

Double Dispatch

class Point2D
{ Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point2D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point2D& assignHelper(const Point3D& rhs);
virtual Point2D& assignHelper(const ColoredPoint& rhs);
Point2D& assignPoint2D(const Point2D& rhs);

};
class Point3D : public Point2D
{
virtual Point2D& assign(const Point2D& rhs);
virtual Point2D& assignHelper(const Point2D& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point3D & assignHelper(const Point3D & rhs);
virtual Point2D& assignHelper(const ColoredPoint& rhs);
Point3D& assignPoint3D(const Point3D& rhs);

};

1

2

3

Point2D& a1 = Point2D(); Point2D& a2 = Point3D(); a1 = a2;

20

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (39)

Double Dispatch

class Point2D
{ Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
virtual Point2D& assign(const Point2D& rhs);
virtual Point2D& assignHelper(const Point2D& rhs);
virtual Point2D& assignHelper(const Point3D& rhs);
virtual Point2D& assignHelper(const ColoredPoint& rhs);
Point2D& assignPoint2D(const Point2D& rhs);

};
class Point3D : public Point2D
{
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point3D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point3D & assignHelper(const Point3D& rhs)
{ return ((Point3D &)rhs).assignPoint3D (*this); }
virtual Point2D& assignHelper(const ColoredPoint& rhs);
Point3D& assignPoint3D(const Point3D& rhs);

};

1

2

3

Point2D& a1 = Point3D(); Point2D& a2 = Point3D(); a1 = a2;

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (40)

Double Dispatch

class Point3D : public Point2D

{ // inherited operator from base class
Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point3D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs);
virtual Point3D & assignHelper(const Point3D & rhs)
{ return ((Point3D &)rhs).assignPoint3D (*this); }
virtual Point2D& assignHelper(const ColoredPoint& rhs);
Point3D& assignPoint3D(const Point3D& rhs);

};

2

1

3

Point3D& m1 = Point3D();
Point3D& m2 = Point3D();
m1 = m2;

21

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (41)

Double Dispatch

class Point2D
{ Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
...
Point2D& assignPoint2D(const Point2D& rhs);

};
class Point3D : public Point2D
{
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point3D&)*this); }
...
virtual Point2D& assignHelper(const ColoredPoint& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }

};
class ColoredPoint : public Point2D
{ Point2D& operator=(const Point2D& rhs);
...
virtual Point2D& assignHelper(const Point3D& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }

};

1

2

3

Point2D& a1 = Point3D(); Point2D& a2 = ColoredPoint(); a1 = a2;

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (42)

void someFunction(Point2D& lhs, Point2D& rhs)
{ ...
lhs = rhs;
...

}

Invocation

Point3D origin;
ColoredPoint red;
someFunction(origin,red); invokes Point2D::assignPoint2D()

• Invocation through references leads to mixed-type
assignment and (intended) object slicing.

triggers double dispatch

Point3D red, blue;
someFunction(red,blue); invokes Point3D::assignPoint3D()

22

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (43)

Assignment With (Double/Table) Dispatch

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

A

B

OK slice

OK

slice

slice

slice

slice

slice

OK

OK

slice

slice

OK

C

B OKslice slice

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (44)

Evaluation

• Double Dispatch is the classic solution.
– does not need RTTI
– less maintainable

8because dispatch logic is spread over all classes in the hierarchy

• Dispatch Table is more maintenance-friendly.
– one central point

8that must be modified when hierarchy grows

23

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (45)

Assignment Via Values

• Whole discussion only concerns invocation of
assignment operator through references.

void someFunction(Point2D lhs, Point2D rhs)
{ ...
lhs = rhs;
...

}

invokes
Point2D::operator=()

Invokes base class assignment even if assignment operator is
virtual.

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (46)

Virtual vs. Synthetic Assignment

class Point2D
{
public: ...
virtual Point2D& operator=(const Point2D& rhs);

};
class Point3D : public Point2D
{
public: ...
virtual Point3D& operator=(const Point2D& rhs);

};
class ColoredPoint : public Point2D
{
public: ...
virtual ColoredPoint& operator=(const Point2D& rhs);

};

plus synthetic
operator=(const Point3D&)

plus synthetic
operator=(const ColoredPoint&)

• Definition of virtual assignment does not prevent generation
of synthetic assignment.

24

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (47)

Consistency

• The synthetic assignment should be consistent with the
virtual assignment.

void someFunction(Point3D lhs,Point2D& rhs)
{ ...
lhs = rhs;
...

}

invokes virtual
Point3D::operator=
(const Point2D& rhs)

void someFunction(Point3D lhs,Point3D rhs)
{ ...
lhs = rhs;
...

}

invokes synthetic
Point3D::operator=
(const Point3D& rhs)

should have the same effect

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (48)

Ensuring Consistency (i)

class Point2D
{public: ...

virtual Point2D& operator=(const Point2D& rhs);
};
class Point3D : public Point2D
{public: ...

virtual Point3D& operator=(const Point2D& rhs);

Point3D& operator=(const Point3D& rhs)
{ return operator=(static_cast<Point2D&>(rhs)); }

};
class ColoredPoint : public Point2D
{public: ...

virtual ColoredPoint& operator=(const Point2D& rhs);

ColoredPoint& operator=(const ColoredPoint& rhs)
{ return operator=(static_cast<Point2D&>(rhs)); }

};

• Explicitly define the "synthetic" assignment.
– implement by delegation to actual assignment

25

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (49)

Ensuring Consistency (ii)

class Point2D
{public: ...

Point2D& operator=(const Point2D& rhs)
{ return doAssign(rhs); }

protected:
virtual Point2D& doAssign(const Point2D& rhs);

};
class Point3D : public Point2D
{protected:

virtual Point3D& doAssign(const Point2D& rhs);
};
class ColoredPoint : public Point2D
{protected:

virtual ColoredPoint& doAssign(const Point2D& rhs);
};

• Use virtual helper function instead of declaring assignment
itself as virtual.

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (50)

Non-Virtual vs. Synthetic Assignment

class Point2D
{
public: ...
Point2D& operator=(const Point2D& rhs);

};
class Point3D : public Point2D
{
public: ...

};
class ColoredPoint : public Point2D
{
public: ...

};

plus synthetic
operator=(const Point3D&)

plus synthetic
operator=(const ColoredPoint&)

• Synthetic assignment hides inherited assignment.

26

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (51)

Consistency

• The synthetic assignment should be consistent with the
virtual assignment.

void someFunction(Point3D lhs,Point2D& rhs)
{ ...
lhs = rhs;
...

}

does not compile

void someFunction(Point3D lhs,Point3D rhs)
{ ...
lhs = rhs;
...

}

invokes synthetic
Point3D::operator=
(const Point3D& rhs)

explicit assignment is never called

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (52)

Ensuring Consistency

class Point2D
{public: ...
Point2D& operator=(const Point2D& rhs);

};
class Point3D : public Point2D
{public: ...
using Point2D::operator=;

};
class ColoredPoint : public Point2D
{public: ...
using Point2D::operator=;

};

• Avoid hiding of base class operator=.
– insert using directive in derived classes

27

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (53)

Conclusion

• non-virtual assignment
– Leads to radical slicing in all cases.
– Even derived objects are sliced to their base class parts.
– Usually undesired.

• virtual assignment with typeid check
– Eliminates all slicing.
– Mixed-type assignment results in an exception.

• virtual assignment with double/table dispatch
– Allows slicing in all cases.
– Mixed-type assignments lead to base class slicing.

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (54)

Agenda

• Assignment Operator
• Comparison Operator

28

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (55)

Comparison

• Comparison for equality (i.e. operator==()) has
similar issues.
– ... and additional ones ...

• Keep in mind the following natural requirements to an
equality comparison:
– Reflexivity: x == x yields true
– Symmetry: if x == y then y == x
– Transitivity: if x == y and y == z then x == z

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (56)

A Class Hierachy

class Point2D
{
friend
bool operator==(const Point2D& lhs, const Point2D& rhs);
};
class Point3D : public Point2D
{
friend
bool operator==(const Point3D& lhs, const Point3D& rhs);
};
class ColoredPoint : public Point2D
{
friend
bool operator==(const ColoredPoint& lhs,

const ColoredPoint& rhs);
};

• Consider the usual hierarchy of value types:

29

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (57)

bool compare(const Point2D& lhs, const Point2D& rhs)
{ return (lhs == rhs); }

Invocation

Point3D origin(0,0,0);
ColoredPoint here(0,0,RED);
... origin == here ...

invokes
operator==(Point2D&,Point2D&)

i.e. compares only coordinates

Point3D origin(0,0,0);
Point3D center(0,0,100);
... compare(origin,center) ...
... origin == center ...

invokes
operator==(Point2D&,Point2D&)

i.e. compares only coordinates

?

?

invokes
operator==(Point3D&,

Point3D&)

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (58)

Comparison

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

OK slice

slice

slice

slice

slice

slice

slice

slice

slice

slice

slice

slice

slice slice OK

30

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (59)

Solution 1

• Same slicing problem as before with assignment.

• Comparison is symmetric.
– different from assignment
– comparison is not a member function

• Solve the slicing problem by prohibiting mixed-type
comparison.
– as before with assignment
– perform type check and throw an exception

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (60)

Type Check

class Point2D
{
friend
bool operator==(const Point2D& lhs, const Point2D& rhs);

private:
virtual bool equals(const Point2D& other) const
{ if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... compare Point2D part ...
}

};

bool operator==(const Point2D& lhs, const Point2D& rhs)
{ return lhs.equals(rhs); }

31

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (61)

Type Check

class Point3D : public Point2D
{
friend
bool operator==(const Point2D& lhs, const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... compare Point3D part ...
}

};

... same for ColoredPoint ...

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (62)

bool compare(Point2D& lhs, Point2D& rhs)
{ return (lhs == rhs); }

Invocation

Point3D origin(0,0,0);
ColoredPoint here(0,0,RED);
... origin == here ...

invokes
Point3D::equals(Point3D&)

i.e. type check fails

Point3D origin(0,0,0);
Point3D center(0,0,100);
... compare(origin,center) ...
... origin == center ...

invokes
Point3D::equals(Point3D&)

32

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (63)

Same-Type Comparison

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

OK exc

OK

exc

exc

exc

exc

exc

OK

OK

exc

exc

exc

OK exc OK

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (64)

Solution 2

• The type check solves the problem.
– what if we want to allow mixed-type comparison ?

• Try dispatch solution (using table or double dispatch).
– it worked for the assignment
– why shouldn't it work for comparison as well ?

33

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (65)

Double Dispatch

class Point2D
{friend bool operator==(const Point2D& lhs,const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ return other.equalsHelper((Point2D&)*this); }
virtual bool equalsHelper(const Point2D& other) const
{ return equalToPoint2D(other); }
virtual bool equalsHelper(const ColoredPoint& other) const
{ return equalToPoint2D((Point2D&)other); }
virtual bool equalsHelper(const Point3D& other) const
{ return equalToPoint2D((Point2D&)other); }
bool equalToPoint2D(const Point2D& other) const

{... compare Point2D part ...}
};

bool operator==(const Point2D& lhs, const Point2D& rhs)
{ return lhs.equals(rhs); }

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (66)

Double Dispatch

class Point3D : public Point2D
{friend bool operator==(const Point2D& lhs,const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ return other.equalsHelper((Point3D&)*this); }
virtual bool equalsHelper(const Point2D& other) const
{ return equalToPoint2D(other); }
virtual bool equalsHelper(const ColoredPoint& other) const
{ return equalToPoint2D((Point2D&)other); }
virtual bool equalsHelper(const Point3D& other) const
{ return equalToPoint3D(other); }
bool equalToPoint3D(const Point3D& other) const

{... compare Point3D part ...}
};

... same for ColoredPoint ...

34

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (67)

bool compare(Point2D& lhs, Point2D& rhs)
{ return (lhs == rhs); }

Invocation

Point3D origin(0,0,0);
ColoredPoint here(0,0,RED);
... origin == here ...

invokes Point2D::
equalsToPoint2D(Point2D&)

i.e. compares 2D coordinates

Point3D origin(0,0,0);
Point3D center(0,0,100);
... compare(origin,center) ...
... origin == center ...

invokes Point3D::
equalsToPoint3D(Point3D&)

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (68)

Mixed-Type Comparison

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

OK slice

OK

slice

slice

slice

slice

slice

OK

OK

slice

slice

slice

OK slice OK

35

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (69)

Transitivity

Point2D origin(0,0);
ColoredPoint start(0,0,WHITE);
ColoredPoint goal(0,0,RED);

if (start == origin && origin == goal)

// ... it should follow that start == goal ...
assert(start == goal);

• Conceptual problem:
– Slice comparison will always lead to intransitive, incorrect

comparison if different "slices" are involved.

(0,0)

WHITE
(0,0)

RED
(0,0)

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (70)

Transitivity

• Mixed-type comparison is non-transitive.
• How about mixed-type assignment ?

... exactly the same conceptual problem !!!

Point2D origin(0,0);
ColoredPoint start(0,0,WHITE);
ColoredPoint goal(0,0,RED);

start = origin = goal;

// ... it should follow that start == goal ...
assert(start == goal);

(0,0)

WHITE
(0,0)

RED
(0,0)

36

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (71)

What's the crux?

• The underlying problem lies in the semantics of our
mixed-type operations.
– Correct semantics require a projection.

• Example:
– A Point3D is comparable to a Point2D

if and only if the 3rd coordinate is 0.

Point2D origin(0,0);
Point3D start(0,0,0);
Point3D goal(0,0,1);

if (start == origin && origin == goal)

true false

(0,0)

(0,0,0) (0,0,1)

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (72)

Projection

• Projections are debatable.

• Example:
– A ColoredPoint is comparable to a Point2D

if and only if the color is BLACK. Or WHITE ? Or RED ?

– It follows that a Point3D is comparable to a ColoredPoint
if the 3rd coordinate is 0 and the color is BLACK

37

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (73)

Misconception

• We are using different notions of comparison:
– comparison of derived types includes derived-specific parts
– base class comparison ignores derived-specific parts
– mixed-type comparison does yet another thing

• Since we use the same name (e.g. operator==) for all notions
we expect transitivity across different notions of comparison.
– that's only doable with projections

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (74)

Many Distinct Operations

• Instead of unifying different notions under one umbrella we
could keep the different notions distinct.

Benefit:
• transitivity within one notion of comparison is more natural
• leads to a notion of comparison for each class in the hierarchy
• no overriding or polymorphic behavior
• must use different function names with different signatures for different

notions

– compare2DPart, compare3DPart, ...
– assignPoint2DPart, assignPoint3DPart, ...

• no implicit slicing (you explicitly say what you want)

38

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (75)

Type-Specific Operations

class Point2D
{
friend bool compare2DPart(const Point2D& lhs, const Point2D& rhs);
};
class Point3D : public Point2D
{
friend bool compare3DPart(const Point3D& lhs, const Point3D& rhs);
};
...

Point2D origin(0,0);
ColoredPoint start(0,0,WHITE);
ColoredPoint goal(0,0,RED);

if (compare2DPart(start,origin) && compare2DPart(origin == goal))

// ... it should follow that start == goal ...
assert(compare2DPart(start,goal));

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (76)

2DPoint Comparison

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

slice slice

slice

slice

slice

slice

slice

slice

slice

slice

slice

slice

slice

slice slice slice

39

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (77)

3DPoint Comparison

Point2D&

Point2D Point3D
Colored
Point

static type

dynamic type

Point3D&

Point3D

lhs
rhs

Point2D

Point3D

ColoredPoint

P
o
i
n
t
2
D
&

dynamic typestatic type

P
o
i
n
t
3
D
&

Point3D

- -

-

-

-

-

-

-

-

-

-

-

-

- - slice

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (78)

Many Distinct Operations

Downside:
• there is no operator== any longer

– there is not just one notion of comparison for all classes in the
hierarchy

• operators such as operator=, operator==, operator<, etc. may
be required by other components
– e.g. non-assignable types cannot be element types in STL containers
– not a problem for homogenous collections such as STL containers

8we cannot instantiate STL containers on reference types anyway
– might be problematic in other context

40

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (79)

Recap (i)

• non-virtual binary operation
– Leads to radical slicing in all cases.
– Even derived objects are sliced to their base class parts.
– Asymmetric, non-transitive.
– Usually undesired.

• virtual binary operation with typeid check
– Eliminates all slicing.
– Mixed-type assignment results in an exception.
– Unifies different notions.
– Symmetric, transitive.
– Recommended.

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (80)

Recap (ii)

• virtual binary operation with double/table dispatch
– Allows slicing in all cases.
– Mixed-type assignments lead to base class slicing.
– Slicing is non-transitive or has debatable semantics

(projection).
– Rarely a good idea.

• no assignment
– Makes slicing explicit.
– No unification of different notions.
– No polymorphic behavior.
– Symmetric, transitive.
– May or may not be the right approach.

41

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (81)

Conclusion

• It's more a design issue than an implementation issue.

• The trouble starts with class hierarchies
– where operations can be applied to objects of different types
– through base class references

• Is inheritance the right design choice in the first place?
– is a ColoredPoint a Point? or is a ColoredPoint an abstraction

that consists of a Color and a Point?
– is a Point3D an Point2D? are there Point2Ds? is Point2D

concrete or an abstraction?
– is a Student a Person? or is "Student" a role of a Person?

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (82)

Use inheritance judiciously

• Avoid hierarchies of value types.
– Without class hierarchies there is no inadvertant mixed-type

operations.
– Use composition instead of inheritance of data.

• Hierarchies of value types create lots of issues regarding base -
derived class relationships.
– Affects all operations that involve two objects from the hierarchy.

8Assignment
8Copying
8Comparison
8...

42

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (83)

Semantics of binary operations

• Carefully figure out which semantics a binary operation
should have.
– Critical cases are operations performed on objects of different

types.
– Invocation cannot be prevented because of the base-derived

relationship.

• Define sensible semantics for the mixed-type case:
• Recommended:

– Perform type check and reject mixed-type operation.

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (84)

Recommended Assignment

class Point2D
{public: ...
virtual Point2D& operator=(const Point2D& rhs)
{ ...
if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... assign Point2D part ...
}

};

class Point3D : public Point2D
{ public: ...
virtual Point3D& operator=(const Point2D& rhs)
{ ...
if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... assign Point3D part ...
}
Point3D& operator=(const Point3D& rhs)
{ return operator=(static_cast<Point2D&>(rhs)); }

};
... same for ColoredPoint ...

43

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (85)

Recommended Assignment

class Point2D
{public: ...

Point2D& operator=(const Point2D& rhs)
{ return doAssign(rhs); }

protected:
virtual Point2D& doAssign(const Point2D& rhs)
{ ...
if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... assign Point2D part ...
}};

class Point3D : public Point2D
{public: ...

using Point2D&::operator=;
protected:
virtual Point3D& doAssign(const Point2D& rhs)
{ ...
if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... assign Point3D part ...
}

};

... same for ColoredPoint ...

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (86)

Recommended Comparison

class Point2D
{friend bool operator==(const Point2D& lhs, const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... compare Point2D part ...
}

};
bool operator==(const Point2D& lhs, const Point2D& rhs)
{ return lhs.equals(rhs); }

class Point3D : public Point2D
{friend bool operator==(const Point2D& lhs, const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... compare Point3D part ...
}};

... same for ColoredPoint ...

44

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved.
http://www.Angelika Langer.com
last update: 11/6/2005 ,16:08 binary operators (87)

Contact

Angelika LangerAngelika Langer
Training & Mentoring
Object-Oriented Software Development in C++ & Java
Munich, Germany
Email: info@AngelikaLanger.com
http: //www.AngelikaLanger.com

